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Abstract. The real polarization potential AV due to transfer reactions is studied using a microscopic 

semiclassical formalism. It is found that AV is typically of the same order of magnitude as the 

corresponding absorptive potential W. Different types of possible energy dependences for A V and 

W are explored qualitatively. Specific calculations for I60 + *‘*Pb and I60 +60Ni scattering show 

features similar to those which have been deduced empirically. 

1. Introduction 

The optical model is widely used for describing the elastic scattering of nuclei. 

The imaginary part, W, of’this potential takes into account the presence of other 

states that couple to the elastic one and leads to a flux loss into the open reaction 

channels. The couplings also give rise to a real polarization potential AV which 

renormalizes the “bare” real part V of the potential. Thus the optical potential has 

the general form 

U= V+AU, 

and 

AU=AV+iW. 

Experimental estimates of AV can be masked by the uncertainties in V and W 

which are inherent in optical model calculations. However some recent analyses of 
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low-energy heavy-ion collisions indicate that sizeable polarization effects are occur- 
ing ‘-‘). It is the aim of the present paper to calculate AU within a semiclassical 
description of the collision process, focusing on the role played by intermediate 
transfer reaction channels. 

There has been recent progress towards a microscopic understanding of the 
imaginary part of the heavy-ion optical potential [see ref. “) and references therein]. 
In particular, it has been shown that transfer reaction channels determine the 

long-range part of W [refs. “F7)]. It follows that they should also be the processes 
that determine A V at large distances. Previous work on the real nuclear polarization 
potential for heavy ions has been mainly concerned with effects of couplings to 
inelastic excitation channels, which become important at relatively smaller distances 
(long-range polarization and absorption effects due to Coulomb excitation have 
also been studied extensively). A review is given in ref. “). 

In the next section we derive a microscopic expression for A V using semiclassical 
perturbation theory. After examining the structure of this result we present in sect. 3 
some detailed numerical calculations of AV for specific cases. A summary of the 
main results of this work is given in sect. 4. 

2. A ~micla~i~l expression for the polari~atian potential 

Our approach is based on using semiclassical perturbation theory to obtain the 
amplitudes for second-order transitions. The correction to the elastic potential can 
be obtained as a special case of the formalism developed in ref. “) for inelastic 
couplings by setting the final channel equal to the initial one. This can be shown 
in the most convenient way by considering a system of coupled inelastic channels 
which carry no spins. 

The elastic scattering amplitude for an even system can be written in general 
as 

f&(e) = (i/2k) C (2f+ l)P,(cos @)(l -eizgs a:,), 

where PI is the real partial wave phase shift due to the bare elastic potential and 

aL is the reaction amplitude for the elastic channel. Up to second-order semiclassical 
perturbation theory one obtains for at, the expression lo) 

+m 
a ;,=l-(l/P)C 

Y I 
dt V,,(r(t)) em’“?’ 

-co I 

f 
dt’ V,,(r(t’)) eimyt’, 

-cm 

Here V,,(r) specifies the coupling, i.e. the form factor, to an intermediate state 
with excitation energy E, = Rw, (E, = 0) and the integration is carried out along 
the trajectory for the impact parameter p = i/k. The effects of the coupling 
can be taken into account implicitly by a change AU = AV+ iW in the elastic 
potential. This amounts to incorporating the reaction amplitude into a new phase 
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shift j?{ in the partial wave summation. Treating AU to leading order and using 
the semiclassical approximation for its cont~bution to the phase shift lo), one 
obtains 

Thus we can identify the integral of AU with the second-order contribution to the 
reaction amplitude. 

At this point we can directly take over the procedure from ref. “) for localizing 
the right hand side of the preceding equation to obtain AU Thus by assuming an 
exponential radial dependence for the coupling, V,,_ - exp (- r/ a,,), and expanding 
about the turning point, r = r,+ $fot2, we are led to the result 

J 
+m f 

I(4 = dt e- (t2/2~~)-ioyf (r'2/2s2,)+io,i' 
--a3 J -mdt’e- 

Here at = a,/ &. We will be considering one class of intermediate couplings charac- 
terized by a common diffuseness parameter a,. Notice that T = 2.3u,, gives a measure 
of the collision time; i.e., the duration of the coupling along the trajectory. In this 
work we concentrate on the effects of one-nucleon transfer reactions. They usually 
carry the largest cross sections. Their form factors V,,(r) are relatively long-ranged 
with diffuseness parameters of about a = 1.3 fm [refs. ““)I_ The corresponding 
induced elastic potential therefore has a = 0.65 fm, which is typical for empirical 
optical potentials. For transfer reactions the quantity hw is the difference, Q - Qopt, 
between the Q-value and the optimum Q-value. In general, it also depends on the 
transfer of angular momentum, as indicated in sect. 3. 

The real and imaginary parts of the double integral I(o) are given by 

+a7 

J J 
f 

Re I(w)= dt 
-cOdt’e- 

(tZ+t,-%oZ c*s w( t’ _ t) = & e-o*e*, 
--m +* 
J J 

I 

ImI(o)= dt 
-02 

_-m dt’ e-(t2+t’Z)/‘~2 sin w( t’- t) . 

Neither the real nor the absorptive part of the potential can be determined unam- 
biguously from the knowledge of the phase shift. By the prescription given here 
one asks for a local potential which is independent of the impact parameter. One 
might therefore suspect that such a prescription would lead to a potential which 
would not satisfy a dispersion relation. However, it follows from the analytic 
properties of the function I(o) in the complex w-plane that 

Im I(w)=-I-P 
?T I 

+-a Re I(@‘> dw, 

--oo WI---w f 
Re I(w) = :P 

I 

+m Im I(@‘) do, 

-co w--uf * 
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While the real part peaks at w = 0 and drops off rapidly, the imaginary part is 
antisymmetric about w = 0 and decreases slowly for large w (see below). These 
results provide an insight into the nature of the effective potential since the depen- 
dence on the important physical parameters - the number of intermediate states, 
the strengths with which they couple to the ground state, their excitation energies 
and their effective contact times - appear explicitly (the spins of the intermediate 
states will be included in sect. 3). A detailed calculation is required to specify the 
coupling strengths. For the qualitative discussion which follows we simply consider 
them to be characterized by a typical order of magnitude. Quantitative calculations 
are given in sect. 3. 

A number of interesting points can be made by considering the situations illus- 
trated in fig. 1. Here we show plots of the real and imaginary parts of I(o) and we 
have indicated some possible distributions for the energies of the intermediate states 
as shaded areas. Notice that negative frequencies correspond to positive effective 
Q-value transfer reaction channels ( Qeff = Q - Qopt = -hw). Notice also that a factor 
-i appears when converting I to AU. Inelastic excitations and negative effective 
Q-value transfer reaction channels give rise to a negative correction AV, thereby 
increasing the nuclear attraction. For an equal distribution of channels over positive 
and negative w-values or for cases where the main contributions come from the 
neighborhood of w = 0 (fig. la), there will be abso~tion without polarization. When 
there is a uniform distribution of states for o > 0, as indicated in fig. lb, we can 
expect more comparable values for AV and W. However, for cases where the 
intermediate states are localized at high frequencies (fig. lc), the polarization poten- 
tial dominates over the absorption. This corresponds to the well-known polarization 
phenomenon associated with virtual excitations, which exists even in the static limit. 

By considering a fairly uniform distribution of states with w > 0 we can make a 
simple estimate of the ratio A V/ W. The imaginary part of I(w) can be expressed 
in terms of a principal value integral “). 

I 

+m 
Im I(o) = cr2P (dq/q) e--(9+“‘)2~2. 

--co 

It follows from this result that the frequency w. where the imaginary part of I(w) 
is maximum satisfies the relation 

w0 Im I(oo) = -J&. 

As a rough estimate we can consider that AV is proportional to the area woJIm I(oo)j. 
We can also estimate W as being proportional to half the area under the gaussian 
of the real part of I(o). In this way we obtain A V/ W = 2/ 7~ = 0.6. 

Actually it should be kept in mind that the relative strengths of A V and W depend 
on the bombarding energy. There is an overall and relatively slow dependence on 
the energy since our expression for AU is propo~ional to the collision time. The 
main effect of the collision time is to determine the widths of curves like those 



138 C.H. Dasso et al. / Nuclear polarization potential 

0 
0 

Fig. 1. Behavior of the double integral I(w) and three types of distributions for the energies of the 

intermediate states. Real and imaginary parts are indicated by the dashed and full lines respectively. 
Both scales are in arbitrary units. 
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shown in fig. 1. For instance, at low energies these curves become narrow. Typically 
this cuts off the higher frequency contributions to W leaving AV comparatively 
favored. In addition, for the case of intermediate transfer reaction channels the 
effective Q-value, Q - Qopt, depends on the bombarding energy “). Thus the types 
of intermediate state distributions indicated in fig. 1 can vary as the energy changes. 
In the following section we will explore the energy dependence of the polarization 
potential in greater detail. 

Qualitatively one can understand the existence of correlations between AV and 
W by observing the plot of the functions displayed in fig. 1. A single intermediate 
channel would be represented by a point whose abscissa changes as a function of 
the bombarding energy. An increasing contribution to the imaginary part results as 
the channel moves gradually towards the center. The maximum rate in the increase 
of the absorption (i.e. its inflection point) correlates with the bombarding energy 
that produces the highest value of the polarization. This simple picture tends to get 
blurred as one superimposes the effects of many channels. However, the analytic 
connection between the real and imaginary parts of our expression for AU is not 
affected by the sum over the inte~ediate steps. 

It should also be noted that while the summation over intermediate states in the 
expression for W has a natural cut-off, there is an apparent difficulty in extending 
the sum into the continuum region for AV. This is because at large o 

Im I(w)+--J;F;F-~~w, 

as can be seen from the integral expression given above. This slow rate of convergence 
does not pose a fundamental problem since the coupling strengths at high frequencies 
effectively limit the number of active channels. In the applications that follow we 
have restricted the sum over intermediate steps to bound states in the A f 1 systems. 
While this practical truncation leaves uncertain the actual magnitude of the polariz- 
ation potentials, their energy dependence can be calculated more reliably. In fact, 
we note that the contributions of intermediate channels to the derivative (dA V/dE) 
would have a better convergence rate. 

One may thus extract the energy dependence and obtain a faster convergence by 
subtracting from the full expression for A V the quantity A VCbtained by replacing 
Im I(w) by the static limit. Note that the expression Jrra*/o is a fairly good 
approximation to the function up to the maximum (which belongs to the asymptote). 
In the static limit we find at the distance r 

This is in fact the standard polarization potential that one would calculate in second 
order time-independent perturbation theory. 
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3. Numerical calculations 

In this section we present numerical calculations of the polarization potential for 

some specific cases, making use of microscopic single-particle transfer form factors. 

These are constructed and parametrized as in refs. 699). 

Considering the case where the projectile and target are spinless and focusing on 

the stripping reaction process where particles occupying orbits ai in the projectile 

are transfered to orbits a, in the target, we obtain the following expression for the 

effective potential, 

AU(r)= C 
alai J 
x I~l,“;(r)12(-i)[gh(Q)+ ih(O 

A similar expression holds for single-particle pick-up reactions. Here fA denotes the 

transfer formfactor of multipolarity A while U and V are occupation factors for 

the orbitals. The term between brackets is given by the expression 

c 

I 

X dt’ e- @/2-i(a-b cm e)t’ 
3 

J-CC 

where 

(1 +;)A 
b =&,,(a,, a;)h2/YoL 2 . 

llIaArO 

In the discussion of sect. 2 we neglected the angular momentum transfer A associated 

with the intermediate state, which amounts to setting b = 0 in the expression above. 

The quantity g,(Q) is the adiabatic cut-off function introduced in ref. “). The new 

feature introduced here is the polarization function ph( Q) which determines the 

real part of AU. It can be calculated directly from its definition, or from the more 

explicit expression 

m(Q) = (2/n 
3/2) J1: do e-(a-b cos 0)’ ,-‘“” ‘OS e, dy ey2 . 

0 

The plots in fig. 2 show the contours of g and p in the plane of the parameters a 

and b. These plots can be used to construct the effective potential once the form 

factors and bombarding conditions have been specified. 

As our first example we have calculated AU for the reaction 160 + S8Sr at Elab = 

52 MeV. The results are shown in fig. 3. The AV associated with proton and neutron 

single-particle transfers to the bound states of neighbouring nuclei is comparable 

in magnitude to W and amounts to about 15% of the estimated “bare” potential. 
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Fig. 2. Contour plots of the adiabatic cutoff function (top) and the polarization function (bottom). The 
axes relate to the energy and angular momentum of the intermediate states. The parameters a and b are 

defined in ref. 6). Note that for inelastic excitations D LX Q = -o (cf. fig. 1). 

We have checked the approximation involved in keeping only the leading urder in 

the expansion for the phase shift /?,_ In this system, for example, the time integral 

of AU for a grazing trajectory is about 0.05. 

The energy dependence of the polarization potential has been focused on recently, 

following the discovery of an increase in the real part of the optical potential 

extracted from % + “*Pb elastic scattering measurements at low bombarding 
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r (fm) 

Fig. 3. Calculated polarization potential AV and absorption W due to single nucleon transfer reactions 

in the case of I60 +s8Sr at E,,, = 52 MeV. The empirical potential I’) V is shown for comparison. 

energies ‘1. It has been pointed out that this effect is to be expected on the basis of 

a dispersion relation between the absorptive potential and the real polarization 

potential “). Explicit coupled-channels calculations for this system have also shown 

large polarization effects due to the transfer channels 334). It is interesting to study 

this effect within the present model. 

The results for ‘60+208Pb shown by the solid curves in fig. 4 do give an energy 

dependence which is similar to what has been deduced empirically ‘). As discussed 

before, the absolute magnitude of the polarization potential is somewhat uncertain 

due to the effective truncation of intermediate channels with high Q-value. The 

sums were here extended to include bound states with j (z\ G 25 MeV, a range for 

which the energy dependence shown in the figure was found to be fairly stable. 

The optical potentials required to fit ‘60+60Ni elastic scattering have also been 

found to depend on energy in a similar way as the I60 + 208Pb case ‘>. In fig. 5 we 

show calculations for this system. 
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Fig. 4. Energy dependence of the polarization potential (full line) and absorption (dashed line) due to 

single nucleon transfer for the case of ‘60+208Pb. The magnitudes are taken at r = 13 fm. 
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Fig. 5. Energy dependence of the polarization potential (full line) and absorption (dashed line) due to 

single nucleon transfer for the case of I60 + 60Ni. The magnitudes are taken at r = 10 fm. 
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4. Summary 

In this work we have investigated a semiclassical expression for the real nuclear 
polarization potential AV. This result appears as a special case of the formalism for 
inelastic formfactors given in ref. ‘). It also complements the derivation of the 
absorptive potential W in ref. “). The long-range part of AV, like that of W, is 

governed by the transfer of single nucleons. A simple analytic estimate indicates 
that AV is of the same order of magnitude as W. Thus typically about 20% of the 
real part of empirical ion-ion potentials may be due to dynamical polarization 
effects. The polarization potential due to inelastic nuclear scattering 12) has a shorter 
range but is again of the same magnitude as the absorptive potential due to inelastic 
excitations. 

Within the semiclassical approximation the energy dependence of AV and W is 
controlled by the collision time and the distribution of the intermediate states. 
Generally AV receives strength from high-lying states, corresponding to virtual 
excitations. As a consequence the strength of AV decreases more slowly than that 
of W as the bombarding energy is reduced. The distribution of intermediate transfer 
reaction channels is defined in terms of the effective Q-value, Q - Q_,*. Our results 
suggest that one may find different types of energy-dependent effects in heavy-ion 
optical potentials according to the distribution of effective Q-values for the strongest 
reaction channels. 

The detailed numerical calculations for the cases of 160+ *‘*Pb and I60 +60Ni 
show features in the energy dependence of the polarization potential which are 
similar to the effects deduced from recent empirical analyses ‘*2V5). 

One of us (G.P.) would like to acknowledge helpful discussions with Prof. C. 
Rossetti and S. Sciuto. 
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