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Abstract: Transition densities for pair-transfer modes are calculated microscopicatiy in the vicinity of 

closed-shell nuclei. An RPA-like formalism is used to allow for the presence of ground-state 

correlations and the radial shapes of the transition densities are constructed from the resulting 

wavefunctions. The aim of this study is to check the validity of a macroscopic picture in which 

these functions are parametrized in terms of the derivative of the equilibrium density with respect 

to the number of particles. The structure calculations yield values for the pairing deformation 

parameters & which can be compared with those extracted from DWBA analyses of two-particle 

transfer data. 

1. Introduction 

A large body of experimental evidence supports the prevailing view that nucleons 

move rather independently of each other in a central, self-consistent field. This 

picture has been gradually enrichened by the identification of residual interactions 

which generate the specific features displayed by actual nuclear systems. Among 

them, for instance, the tendency of identical nucleons to couple in pairs of total 

angular momentum zero. At a microscopic level the presence of these particular 

correlations has been attributed to the existence of short-range residual forces. These 

so-called pairing interactions are responsible for a variety of nuclear effects. Of 

special interest to us, in this work, are enhanced transition rates in the transfer of 

two like-particles in heavy-ion collisions. 

A convenient description of this class of reactions is obtained by considering the 

pair-transfer process as the excitation of a special type of collective motion. This 
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“excitation” must be interpreted in a wider sense, as it is associated with degrees 
of freedom which do not strictly conserve the number of particles ‘). From this 
perspective the addition (or removal) of two particles in the target are rather viewed 
as the creation (or annihilation) of a pair. A prescription to construct the fields 
which are responsible for the excitation of these modes has been advanced in ref. ‘). 
They are obtained by allowing the standard one-body density to be generalized into 
its number non-conserving forms, i.e., 

One should here emphasize the persistent one-body character of these generalized 
fields, as the matrix elements in (1) are defined in the coordinate representation in 
terms of a function of a single nucleon variable. This could in general be of the 
form F( r, p) and therefore incorporate non-local effects. In heavy-ion collisions, 
though, the interaction felt by a nucleon in the target due to the nearby presence 
of the projectile is customarily approximated by the velocity-independent central 
field generated by the latter. 

The adoption of this point of view eases the implementation of a simpler formalism 
to describe the transfer process. Using the variation in the number of particles AA 

as the collective variable, the local pair transition densities can be modeled 2, by 

where the parameter &, gives a measure of the collective character of the pair- 
correlated state. The previous expression, supplemented by a scaling assumption, 
leads to macroscopic formfactors of the form 

(3) 

where R stands for the radius of the target and U is the ion-ion potential. 
Up to this point, the introduction of the pairing deformation parameter &, in the 

analysis of two-nucleon transfer data could be viewed as just a convenient way to 
scale the magnitude of the calculated cross sections. This situation resembles the 
empirical determination of nuclear-deformation parameters for collective surface 
modes which are based on DWBA calculations. In such analyses, however, a relative 
consistency is expected of the values for a given nuclear state which are obtained 
from different experimental conditions. (We note that this property is not always 
fulfilled, see for instance the compilation in ref. ‘).) 

The perspective changes as one tries to understand the magnitude of the extracted 
numbers from a microscopic point of view. Indeed, the adopted form of the collective 
field and the strength of the coupling impose constraints on the distortions of the 
nuclear density which are associated with the excitation of the mode. Controlling 
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these conditions should provide a more stringent check on the validity of macroscopic 

schemes. 

Considerable substantiation of the macroscopic model for the excitation of surface 

vibrations has been obtained from structure calculations (see e.g. ref. “)). In this 

paper we examine some of these questions in the novel context of two-particle 

transfer reactions. To this end we construct the shape and magnitude of pair transition 

densities for closed-shell nuclei and in the process obtain microscopic values for 

&. We note that a similar study has also been conducted for superfluid systems ‘). 

2. Formalism 

The traditional attitude to keep pair addition and removal modes as independent 

degrees of freedom centers on the observation that these modes are built mainly of 

single-particle levels which are respectively above or below the Fermi surface. It 

has been noted ‘), however, that this point would not be relevant if the pairing 

interactions were capable to induce strong ground state correlations. Anticipating 

this possibility we shall construct the wavefunctions for the states of (A f 2)-particle 

systems with an RPA like formalism. 

We consider a hamiltonian of the form 

I?=&+ Qr,,, (4) 

where &, generates the independent-particle states (n&&m,) and the residual 

interaction pr;,, is assumed to be separable 

9 EK&$_ res + , (5) 

i.e. the product of two generalized one-body operators of the form 

@+ = 5 (&Q)KX, .k = 5 (aplp)u& = ($+)’ . (6) 

We shall take for the operators $* the same radial dependence which follows from 

the macroscopic description of the mode. In this picture one lets the residual 

interaction assume the form 

qr;,, + KS” &” ) (7) 
A 

where now SH is the hermitian combination 

Contrary to the qr,, given in eq. (5) the macroscopic interaction in (6a) does not 

strictly commute with the number-of-particles operator. The resulting eigenstates 

can therefore no longer be associated with a specific mass partition. The operator 

.Y@,., has however been defined so that it tends to conserve the number of particles 

in average, as it befits an oscillation represented by the macroscopic variable AA. 
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To isolate the radial dependence one equates the field approximation for the 

variation of the single-particle potential 

6V- KSAA (9) 

to the macroscopic expression 

SV=zAA-& 5; AA. 
( > 

(10) 

In this way the diagonal matrix elements of the field @n (or $+, @-) in coordinate 

representation are identified with the surface-localized function 

9(‘,=$-(g--+[l+exp(y)]-‘, (11) 

V,, R and a being the depth, radius and diffuseness parameters of the nuclear 

potential. 

Given the scalar character of the field, the RPA diagonalization of the residual 

interaction is carried out in the basis of unperturbed configurations 

Ia> = I(kJJ&J , (12) 

where we have restricted the states of paired nucleons with total spin zero to be 

formed within the same subshell. 

The RPA equations are then “) 

(%-2=%)X(@; h) = (l-2%) 4 (oILlP)X(P; n) , (13) 

where X((Y; n) is the coefficient of the configuration (Y in the expansion of the 

eigenstate n and n, denotes an occupation number, 1 and 0 for hole and particle 

states respectively. The matrix elements of the interaction are, as indicated, of the 

form 

(&&=-W(a)@) , (14) 

where the q’s, assumed real, are the radial integrals of the field, 

(15) 

The definition of the unperturbed and correlated energies in these equations are 

Ecx(A+l)-E,(A) for particles (n, = 0) 

&a = E,(A)-&(A-1) for holes (n, = 1) 
(16) 

I 

E,+(A+2)-E,(A) for n=n+~{A+2} 

“,= E,(A)-E,_(A-2) for n=n_~{A-2) (17) 

Note that with these conventions the energies of the bound states of the (A + 1) and 

(A + 2) systems are negative. 
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The wavefunctions n (+) of the states in the (A f 2) systems are defined as 

In*> = ~+(n*)l%P*, (18) 

where 

T’(n+) =c (1-2nm)X(~; ~+)b~~&l, (19) 
a 

r+(n_) =c (1-2n,)X(CY; n_)[a;a;]&) (20) 
a 

and the reference RPA vacuum is such that 

~(~*mtPA = 0. (21) 

The separable character of the interaction makes it possible to obtain the eigener- 

gies w, as solutions of the simple dispersion relation 

For each value of o satisfying this equation, the amplitudes X are constructed 

according to 

x(a. n)= _(I -2naMa) c (1_2n ) 
q2(4 -“2 

9 

%---2% 01 OL (w,-2&,)2 ’ 
(23) 

as it follows from the normalization condition 

I(1 -2n,)X(a; n*)X(a; m*) = *&I*,* * (24) 
u 

The expansion coefficients X for the different roots determine the microscopic 

expression of the corresponding transition densities. 

3. Miscroscopic pair transition densities 

As we have mentioned, the interpretation of collective pairing modes exploits an 

extension of the standard one-body density which allows for transitions across the 

mass partition. Let us follow the argument for the specific case of a scalar operator, 

as it provides a simple way to derive a microscopic expression for the pair transition 

densities. 

The general expression for a one-body operator in the basis of single-particle 

states Ia) is 
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We take for the single-particle basis the set of discrete nuclear states characterized 
by cy = (n&r) and transform the matrix elements into the coordinate-spin rep- 

resentation, 

s= 
I I 

drz dr’x C (cu~rY)(r~‘(Flr’~‘)(r’~‘l~)u~~~. 
Y v’ ap 

For a local, spin-independent field this expression reduces to 

(26) 

@= I iI drF(p) C 1 @pX(r, v)@@(r, v)aLup = drF(r)p^(r), 15 (27) 
ZJ aP 

where we have introduced the density operator b(r) 

b(r) = C C @&Jr, v)RP15,,Jr, v)a$~+rli~. 
n&n Y 

n’i’j’m’ 

cw 

A more compact formula is obtained when we restrict ourselves to the specific 
case of interest, namely to scalar fields of the form 

F(r) -&f(r) . -- (29) 

For these, a further reduction of the density operator takes place, since the integration 
over the orientations r^ can be exploited to write 

$‘= 
i 

m 
4&F{ r&0( P) dr 

0 

where the scalar density fro(r) is now simply defined as 

(30) 

(31) 

in terms of the radial part of the single-particle wavefunction R,&(r). The label “0” 
establishes here the number-conse~ing character of the operator. Henceforth the 
indices 0, + and - are used as a short-hand notation for operators involving AA = 0, 

+2 and -2 respectively (see for example the use of these labels in eqs. (5) and (6).) 
To ease the introduction of a generalized one-body operator associated with the 

addition of two particles it is convenient to rewrite this later expression in terms of 
the operators b+ which create a hole, that is 

In the previous expression the operator 

(3% 

(33) 

stands for the creation of a normalized particle-hole state with total spin zero. We 
adopt here a prescription according to which the extension to particle-particle pairs 
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is achieved by substituting in (32) 

133 

(34) 

which leads to a “one-body” operator of the form 

I 

00 
fi+ = 4rrr2F(r)b+(r) dr, 

0 
(35) 

defined, in analogy to eq. (32), in terms of the generalized density 

b+(r) = 5% &(r)kfi(r)~+. 

The pair-addition transition density is finally defined as the matrix element of 

this operator which connects the initial and final states in the process, namely 

G+(r) = (n+lP^+(r#ORpA. (37) 

In a similar way microscopic expressions can also be written for the removal modes. 

4. Applications 

In this section we present numerical results relevant for two-nucleon transitions 

in the vicinity of the reference nuclei 2o8 Pb and 40Ca. The calculations were performed 

in a basis of discrete single-particle levels which included at least five main harmonic 

oscillator shells beyond the Fermi energy Ed. The energies of the single-particle 

states were obtained using the parametrization of ref. ‘). The position of the particles 

and holes in the shells immediately above and below eF were, however, adjusted 

to agree with the experimental evidence obtained from binding energies and excita- 

tion spectra in the (A f I)-particle systems. The utilization of a basis of single-particle 

states which respects the empirical order and separation of the single-particle levels 

is essential to obtain a correct account of the additional correlation energy which 

is attributed to the pairing residual interactions. 

To construct the transition densities we use harmonic-oscillator single-particle 

radial wavefunctions. These are appropriate to define the main features of the 

transition densities. The asymptotic behaviour of the radial functions R,,(r) is, on 

the other hand, not quite adequate to describe the tail of the densities at large values 

of r, a feature which-in the context of this study-is not overly restricting. 

The coupling strength was adjusted in all examples to reproduce the experimental 

value of the binding energy of the (A+2)-particle systems, i.e. *l’Pb, 210Po, and 

42Ca. Contrary to the case of standard RPA for inelastic excitations, where the roots 

are degenerate in fw, the adjustment of strength through the ground-state energy 

of the pair addition mode does not automatically ensure a good result for the 

pair-removal mode. In fact, the solutions of the dispersion relation (20), cover the 

modes of both the (A f 2) systems. One may in principle allow for different coupling 



134 C.H. Dasso et al. / Tao-~artiele transfer 

strengths IC* in either case *). In our analysis, however, rather accurate predictions 
of the ground-state energies of the {A - 2) systems were obtained with K+ = K_(cf. 
table 1). 

In the top part of fig. 1 we show the transition densities obtained for the 
ground-to-ground state neutron transfer from ‘08Pb to ‘06Pb and 210Pb. The function 
Sp(r) which is displayed follows from the expression 

f%dr) = C 
AjTi 
- I&( r)X( nZj; N) . 

nlj 47 
(38) 

As it can be seen from eq. (35), the folding of the density operator with the radial 
dependence of the fields always includes the spherical differential volume 4m2. 

Because of this factor, the function Sp( I) near the origin carries no actual statistical 
weight. To avoid this distortion in the graphical presentation of the transition density 
it is preferable to consider the more significant products 4m26p( r), These functions, 
for the current example, are plotted at the bottom of fig. 1. By displaying the relevant 
part of the radial dependence, a close similarity in both shape and magnitude of 
the pair-addition and pair-removal quantities is revealed. 

TABLE 1 

Experimental and RPA energies for the ground states of the nuclei 
quoted in column 1. The coupling constant for the RPA calculation 
was adjusted to reproduce the ground state of the A+2 systems, and 

thus we fdl only with a dash the corresponding fields. 

Nucleus w,xp WV) mRpA WeV) 

“‘Pb -9.12 
‘06Pb -14.11 -14.18 
210po -8.78 
‘*‘Hg -15.38 -15.38 
+Za -19.84 
‘%a -28.93 -27.98 

The quantity &, can be obtained from the microscopic calculation by simple 
quadrature, namely 

P,=[ 4rrr26p dr . (39) 

Thus, the convenience of the representation used in the lower part of fig. 1 is further 
emphasized, as the deformation parameter corresponds directly to the area under 
the given curves. For the ground-state transitions to “‘Pb and 2roPb the extracted 
numbers are respectively p,, = 16 and 18. With these values one can now proceed 
to construct the macroscopic transition density 
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*“Pb *“Pb 
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Fig. 1. Transition densities for the pair-removal (left) and pair-addition (right) neutron modes around 

*‘*Pb. At the bottom the same quantities are displayed multiplied by the volume element 4?rr*. 

and compare their radial dependences. For applications involving the construction 

of pair-transfer formfactors the tail behaviour of the macroscopic approximation 

should be important. For this reason we have chosen this time to display the curves 

in fig. 1 together with their macroscopic counterparts in a logarithmic scale. One 

can see in fig. 2 that-aside from the incorrect parabolic behaviour of the RPA- 

constructed density-the overall magnitude and qualitative shape of the functions 

is similar. The poor asymptotic dependence of the microscopic quantity is in this 

calculation traced to the use of harmonic oscillator wavefunctions. A matching 

procedure in the tail region should change the radial behaviour to a pure exponential, 

a result which the macroscopic expression yields correctly given its direct link to 

the equilibrium nuclear density. 

In fig. 3 we show the transition densities for the ground-state pair-proton transfers 

from *08Pb to 206Hg and *l’Po. The function Sp( r) once more presents in the interior 

characteristic features which depend on the hole configurations which dominate the 
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*“Pb 

r ffm) r (fm) 

Fig. 2. Comparison between the microscopic transition densities for the neutron modes in “‘Pb (full 
line) and the macroscopic expression (dash line). For the latter the density was taken to be a Fermi 

function with parameters pO = 0.17 fm-‘, rO = 1.1 fm and a = 0.6 fm. 

microscopic wavefunction. As it is shown in the lower part of the figure, the inclusion 
of the spherical jacobian restores a more symmetric balance between the pair- 
addition and the pair-removal mode. The microscopic values of the pairing deforma- 
tion parameter turn out to be in this case 8, = 13 and 11, respectively. 

The general features we have in detail presented above for the four pair transfer 
modes around 208Pb are also present in the other systems we have studied. In fig. 
4 we give the results for 42Ca and 38Ca. In this case the microscopic values of the 
deformation parameter are & = 8 and 7, respectively. 

5. Summary 

In this cont~b~tion we have constructed transition densities Sp for pairing 
collective modes in the vicinity of closed-shell nuclei. The wavefunctions in the 
particle-particle a+ hole-hole basis were calculated exploiting an RPA-type formal- 
ism. The inclusion of backward amplitudes takes into account ground-state correla- 
tions which turn out to be important. Characteristic of this study is the use of matrix 
elements for the separable residual interaction which corresponds to a surface- 
localized field. The behaviour of the transition densities in the surface region can 
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Fig. 3. Transition densities for the pair-removal (left) and pair-addition (right) proton modes around 
20*Pb. At the bottom the same quantities are displayed muttipiied by the volume element 47~‘. 

be conveniently emphasized by displaying the functions &rr26p; in this choice of 

presentation a similarity in magnitude and shape between addition and removal 

modes is revealed. An interpretation of both these modes as a manifestation of 

collective vibration across the mass partition appears then plausible. A natural 

macroscopic variable to describe this kind of generalized motion is the variation in 

the number of particles, AA. In terms of this coordinate, simple arguments reIate 

the shape of the transition densities to a derivative of the static density which peaks 

at the nuclear surface. 

As shown in the applications this procedure works quite well in the area of 

interest, i.e. for large values of r. The microscopically calculated transition densities 

do not vanish in the nuclear interior, a region which is however not accessible by 

reactions taking place at grazing distances. Simple quadrature of the functions 

4dSp yields microscopic values for the deformation parameters j3,. In the examples 
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Fig. 4. Transition densities for the pair-removal (left) and pair-addition (right) neutron modes around 

40Ca. At the bottom the same quantities are displayed multiplied by the volume element 47~‘. 

presented in this paper the resulting values are found in order-of-magnitude agree- 

ment with those tentativeiy extracted from the macroscopic analysis of two-nucleon 

transfer data *). Contrary to the microscopic quantities, these empirically extracted 

numbers are sensitive to the dynamical aspects of the reaction mechanism. Con- 

sequently, they are likely to reflect the characteristic energy dependence of second- 

and higher-order processes. Some of these questions have been recently investigated 

by other authors in ref. “). The results of the present study for pairing vibrations in 

normal systems are consistent with the conclusions reached in ‘) for supe~uid 

deformed systems. 
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