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Abstract: Single-proton stripping reactions in the collisions ‘60+208Pb and “C +“*Pb at bombarding 

energies up to 50 MeV per nucleon are analyzed in the semiclassical approximation. Utilizing an 

energy dependent interaction consistent with the data for proton-nucleus scattering the absolute 

cross sections are reproduced. A simple estimate of the total reaction cross section for a specific 

channel in heavy-ion collisions is obtained in a semiclassical description 

NUCLEAR REACTIONS *08Pb(‘60, “N), (“C, “B), E = 100-800 MeV. Calculated c(E). 

Semiclassical approximation. 

1. Introduction 

The transfer of nucleons in heavy-ion collisions between bound states in target 

and projectile is a non-trivial problem due to the recoil effect. A careful treatment 

of the recoil is important at high bombarding energy where the wavelength of the 

relative motion of the ions is small. The semiclassical description is then quite 

accurate while the standard DWBA treatment becomes cumbersome. 

In the semiclassical approximation one may separate the dependence on nuclear 

structure in terms of single-particle form factors which depend on the local momen- 

tum carried by the transferred particle due to the relative velocity of the two ions. 

The interaction potential appearing in these form factors is the single-particle mean 

field of the target as seen from the nucleon in the projectile. At low bombarding 

energies it is therefore the same potential which binds the transferred particle to 

the target in the final state, while at higher energies it is expected ‘32) that the nuclear 

part of this interaction is reduced in the same way as the real part of the optical 

potential for nucleon-nucleus scattering. 
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2. Total transfer cross section 

519 

In order to obtain the cross section for a specific transfer reaction one usually 

has to take into account the depopulation to other channels. This is conveniently 

done in terms of an imaginary part W(r) (the absorptive potential) in the interaction 

potential between the colliding nuclei. This quantity describes the depopulation 

mostly to other transfer channels in the grazing region. The depopulation to fusion 

is included if one neglects all trajectories that pass over the Coulomb barrier in the 

effective potential for the radial motion (the sum of the interaction potential and 

the centrifugal potential). While the differential cross section can only be obtained 

semiclassically by using complex trajectories ‘) the total cross section is rather 

accurately obtained by integrating over all impact parameters p for real trajectories, 

i.e. 

I 
cc 

up=27r PdpPp(p), (2.1) 
0 

where the probability for populating the channel p, 

JJp(P) =Pp(P)Po(P) 3 (2.2) 

is the product of the transfer probability pp and the probability of remaining in the 

entrance channel, 

(2.3) 

The time integral is performed along the classical trajectory corresponding to the 

impact parameter p. The transfer probability may be expressed as the absolute 

square of the amplitude up which in first-order perturbation theory (in the prior 

representation) for a single-particle stripping reaction is given by 

q3(P) =L ih I 1 dt(~~I(U,.-(U,,))ei"~-(k)I(Cr,)exp{i[(Ep-E,)t+yp,(t)llh}, 
‘22 

(2.4) 

where the integral is taken along the classical trajectory. The quantities I,!J~ and lclp 

are the single-particle wave functions of the initial and final states in projectile and 

target, respectively, while UIA is the nuclear-plus-Coulomb interaction of the target 

on the transferred proton. With E, and Ep we have indicated the total energies of 

the entrance and exit channels, respectively. The phase ypa depends on the charge 

and mass transfer while aPa depends on the recoil momentum k (for more details 

cf. refs. “,‘)). 

For high bombarding energies the matrix element in (2.4) depends on time not 

only through the distance r between the colliding ions but also through the momen- 
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turn k of relative motion carried by the transferred nucleon, i.e. 

(& I(u,,-(u,,J) e’“p-“’ I&J-040, kll(t), k,(t)), (2.5) 

where both the longitudinal and transverse components of k contribute. At low 

bombarding energies the interaction U ,A coincides with the shell-model potential 

which binds the transferred nucleon to the target in the state I& ). At higher energies 

it is expected ‘7’) that the nuclear part of this interaction is reduced in the same way 

as the real part of the optical potential for proton-nucleus scattering. Proton 

scattering data are analyzed by using a nuclear interaction of Woods-Saxon shape 

with an energy-dependent depth parametrized as 

with 

&l(E) = 5(E) Ql, (2.6) 

(2.7) 

where E is the energy of the impinging proton. Values of /3 in the range p = 0.3-0.5 

are quoted in the literature “). 

With the parametrization (2.6) of the strength of Ula we notice that the real part 

of the ion-ion optical potential, which is the folding of this interaction with the 

particle density of the projectile, is reduced by the same law where the energy E is 

the kinetic energy per nucleon above the Coulomb barrier. This expectation seems 

to be born out from the experimental data ‘). 

With the simple scaling (2.6) also the form factor (2.5) achieves an approximate 

scaling although the Coulomb component of UIA does not scale with energy. This 

is because the Coulomb field in U,, is essentially cancelled by the Coulomb field 

in the average potential ( UIA), cf. ref. “). 

3. Numerical calculations 

Utilizing an interaction UIA with an energy-dependent depth of the nuclear part 

(2.6) we have calculated the total cross sections (2.1) for the single-proton stripping 

reactions from the ‘60(lp,,,) state to the ground state and first excited states of 

209Bi as well as from the ‘*C( lp,,,) state to the same states in ‘09Bi. The shell-model 

used is the one presented in ref. ‘) except that the depths of the nuclear part of the 

shell-model potentials were adjusted for each level individually to reproduce the 

experimental binding energies. With dashed curves we present in figs. 1 and 2 the 

total cross sections as functions of the bombarding energy in comparison with the 

experimental data of refs. 8-1o) for the 160+ “‘Pb reactions and of refs. ‘1m’3) for the 

‘2C+20*Pb reactions. The calculations have been performed by using the optical 

model parameters of refs. *-lo) for the I60 + “*Pb reactions and of refs. “-14) for the 

12C + “‘Pb reactions. We have assumed that the 160( 1pI12) state and the “C( lp3,2) 
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Fig. 1. Total cross sections for the indicated transfer reactions. The shell-model of ref. ‘) is used with 

the depths of the nuclear part of the shell-model potentials being adjusted for each level individually 
to reproduce the experimental binding energies. The nuclear part of the interaction U,, has an energy- 

dependent depth (2.6), /3 =0.4. The lp,,? state in the projectile is completely filled, the spectroscopic 

factor of the ground state, lh,,,, of the target is 0.95, of the 2f,,, state it is 0.65, of the li,3,2 state it is 

0.35, and of the 2f5,2 state it is 1.00. With dashed curves are shown the cross sections (2.1) calculated 

by using the optical model parameters of refs. s-lo), with full-drawn curves are shown the cross sections 

(2.1) calculated by using the smooth optical potentials, table I. The experimental data are from refs. s-lo). 
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Fig. 2. Total cross sections for the indicated transfer reactions. The shell-model of ref. ‘) is used with 

the depths of the nuclear part of the shell-model potentials being adjusted for each level individually 

to reproduce the experimental binding energies. The nuclear part of the interaction U,A has an energy- 
dependent depth (2.6), p =0.4. The lp,,, state in the projectile is completely filled, the spectroscopic 

factor of the ground state, lh,,,, of the target is 0.95, of the 2f,,, state it is 0.65, of the Ii,,,, state it is 

0.35, and of the Zf,,, state it is 1.00. With dashed curves are shown the cross sections (2.1) calculated 

by using the optical model parameters of refs. ‘t-‘4), with full-drawn curves are shown the cross sections 

(2.1) catculated by using the smooth optical potentials, tabie 2. The experimental data are from refs. “m’3). 
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TABLE 1 

Woods-Saxon parameters for the absorptive potentials having a smooth 

energy dependence for the elastic scattering of I60 + “‘Pb 

I60 + “‘Pb 138.5 50 0.64 1.179 

192.0 52 0.63 1.179 

216.6 52 0.62 1.179 

312.6 50 0.60 1.179 

793.0 35 0.47 1.179 

The corresponding ion-ion potential is the one of ref. “) reduced by the 

scaling factor l(E), p = 0.4, eq. (2.7). The radius parameter is the same for 

the real and imaginary potentials. 

state, from which the protons are being transferred, are completely filled, and we 

have assumed that the spectroscopic factor for the ground state, lh,,,, of 209Bi is 

0.95, for the Zf,,, state is 0.65, for the li,3,2 state is 0.35, and for the 2f,,, state is 1.00. 

The optical potentials used in the calculations presented in figs. 1 and 2 by dashed 

curves are obtained by the various experimental groups by fitting the available data 

for the elastic angular distributions. These potentials do not possess a smooth 

behaviour as a function of the bombarding energy. Therefore, we made an attempt 

to use the (energy independent) ion-ion potential of ref. I’), which is a folding 

potential, reduced by the scaling factor c(E). A search was performed for Woods- 

Saxon shaped absorptive potentials which together with this ion-ion potential fit 

the elastic data reasonably well and do have a smooth behaviour as a function of 

bombarding energy. In tables 1 and 2 we give the Woods-Saxon parameters of these 

absorptive potentials. In figs. 3 and 4 the elastic angular distributions calculated in 

the standard optical model by using the code PTOLEMY 16) on the basis of these 

TABLE 2 

Woods-Saxon parameters for the absorptive potentials having a smooth 

energy dependence for the elastic scattering of “C + ““Pb 

El,, 
(MeV) 

W0 
(MeV) 

‘*C + “‘Pb 96.0 38 0.67 1.178 
180.0 66 0.52 1.178 
300.0 60 0.45 1.178 
420.0 37 0.48 1.178 
480.0 33 0.52 1.178 
604.8 30 0.60 1.178 

See footnote to table 1. 
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lo'p,.,,,.,.,.,., 

160 + *‘*Pb 

%n. (W.) 
Fig. 3. The ratio of the elastic to the Rutherford angular distribution for the scattering of I60 on *“‘Pb 

at different bombarding energies indicated in the separate plots. The curves are calculated in the standard 
optical model with the ion-ion potential of ref. 15) reduced by the scaling factor L(E), p = 0.4, eq. (2.7), 

and the absorptive potentials of table 1. The data points are from refs. s-lo). 
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Fig. 4. The ratio of the elastic to the Rutherford angular distribution for the scattering of “C on ‘“*Pb 
at different bombarding energies indicated in the separate plots. The curves are calculated in the standard 

optical model with the ion-ion potential of ref. Is) reduced by the scaling factor l(E), 0 = 0.4, eq. (2.7), 
and the absorptive potentials of table 2. The data points are from refs. “-‘4). 
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optical potentials are shown in comparison with the experimental data. The absorp- 

tive potential at a bombarding energy of 604.8 MeV for the ‘2C+208Pb reaction is 

obtained by extrapolation - there are no data for the elastic angular distribution at 

this energy. Finally, we present in figs. 1 and 2 with solid curves the total cross 

sections (2.1) for the indicated transfer reactions calculated by using the smooth 

optical potentials. The discrepancies we observe at low energies for the ‘60+208Pb 

reactions is a well known problem that may be ascribed to higher order processes I’). 

The differential cross sections for transfer were calculated in the DWBA by the 

code PTOLEMY for a few examples employing the smooth optical potentials and 

the scaling mentioned above. The results compared well with the experimental 

angular distributions and also with the semiclassical results for the total cross 

sections. 

At the lowest bombarding energies we might have used the absorptive potentials 

calculated according to ref. “) taking into account inelastic excitations and transfer 

of nucleons between bound states in projectile and target, eventually with the recoil 

corrections of ref. “). These absorptive potentials together with the ion-ion potential 

of ref. 15) give an accurate description of the elastic angular distributions at low 

bombarding energy where the absorption is governed by the reactions mentioned 

above due to the Q-value windows for such processes. At higher bombarding 

energies, however, the transfer to bound states becomes weaker and one should 

take into account the depopulation due to transfer to states in the continuum. Besides 

these mean field effects also the effect of two-body scattering to large angles should 

be taken into account 19). For low bombarding energy the absorption due to such 

processes is small due to Pauli blocking. However, as the relative velocity of the 

colliding ions increases, the mean field of the target acting on the projectile becomes 

smaller, and this volume part of the imaginary optical potential, characteristic for 

nuclear matter, increases and one should include it in a proper description of the 

reaction. 

4. Simple estimate 

The total cross section for a specific channel p which is given by the expression 

(2.1) can be written as an integral over the distance of closest approach r. by using 

the classical equation 

2.2 e2 
&+ UN(ro)+< EC.,. = E,.,. , 

r. r. 
(4.1) 

where EC.,. is the center-of-mass energy and UN the ion-ion potential while 2, and 

2, are the charge numbers of projectile and target, respectively. Utilizing (4.1) we 

may thus write 
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The function PP(rO) shows a well-defined maximum. It is according to (2.2) the 

product of the transfer probability in first-order perturbation theory 

(4.3) 

and the probability of remaining in the entrance channel which we may write 

(4.4) 

This expression is obtained from (2.3) by using a second-order expansion of 

r(t) = r0f$Y0f2 and the exponential form 

W(r) = W(R) exp (4.5) 

for the absorptive potential. The diffuseness parameters in (4.3) and (4.5) are usually 

quite similar, a = 0.6 fm. 

With the form (4.3) and (4.5) we find that Pp(r,,) shows a maximum at the point 

rmax where 

Mr,,,) = I/e, (4.6) 

i.e. where 

We may here estimate Y0 by the value 

y. :: 2-L - EB 
morB 

(4.7) 

(4.8) 

for a pure Coulomb scattering where E, is the height and rB the radius of the 

Coulomb barrier while lylo is the reduced mass of target and projectile. For a given 

W(r) one may thus easily estimate r,,, and calculate I)p( rmax). The fact that in 

practice this number is usually smaller than unity is the reason that first-order 

perturbation theory (or DWBA) is applicable for the description of many transfer 

reactions. The distances r, < r,,, where pe~urbation theory breaks down are 

irrelevant because of the strong absorption. 

In most collisions between heavy nuclei the distance rmax is outside the orbiting 

radius rg determined by the point where the square bracket in (4.2) vanishes. We 

may then neglect the variation of this quantity and substitute it by 2E_ - E, as 

was done in the estimate (4.8) of fo. For the lower integration limit r,i, one should 

use the orbiting radius r9. However, in most cases this lower limit is not important 

due to the strong absorption at small distances. Neglecting also the linear dependence 
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on r,, (substituting it by rmax) one may evaluate the integral choosing R = rmax with 

the result 

up = 7rarmax 
2Ec.m. - -% 

E 
PP(rmax). 

c.m. 
(4.9) 

At low bombarding energies with rather light ions it may happen that the distance 

rmax is inside the orbiting radius, i.e. in a region where deep inelastic reactions or 

fusion will take place. One may in this case estimate the total cross section by 

assuming that 

r-R 
U”(r)= UN(R) exp -- 

( > a 
(4.10) 

and using x = exp {-(r,, - R)/ a} as a variable. One finds, using r,in = rg and neglect- 

ing the linear dependence on r. (substituting it by R), 

(2Ln. - Ed2 
u” = TaRpp(R) -(Rla -2) UN(R)2Ec.,, g(q) (4.11) 

with 

where 

g(q) = 2dl - 4(1 -em”71, (4.12) 

R/a-2 UN(R) 
4= 

8ra 2E,.,.-E, W(R) . 
(4.13) 

In the rare cases in light nuclei with small W one may find q B 1. One would then 

choose R = rg implying that 

q=_ ti1 J 87ra W(r,) ’ 
(4.14) 

In the usual case where q -=c 1 (and g(q) = 2q) the expression reduces to (4.9) when 

we choose R = r,,,. 
For a strictly exponential ion-ion potential the orbiting phenomenon would be 

present at all bombarding energies. Since, in fact, the nuclear attractive force reaches 

a maximum at the sum of the nuclear radii, the maximum in the effective potential 

for the radial motion disappears above the so-called critical energy 20). In such 

situations the absorption is strong (q -C 1) so that the total transfer cross section 

does not depend on the lower integration limit, and (4.9) remains approximately 

valid. 

The accuracy of the formulae (4.9) and (4.11) has been checked. There exist 

analytical expressions for the evaluation of the transfer probability pP(rB), cf. 

refs. 4,21). The formulae of ref. “) are rather accurate at energies below 50 MeV per 

nucleon, and so are the results by Brink et al. 21) at higher energies, when the 

trajectory of relative motion can be approximated by a straight line. 
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5. Conclusion 

589 

It has for some time been a puzzling problem that standard DWBA calculations 

were not able to reproduce the absolute cross sections for the single-proton stripping 

reactions for the collision of 160 on *“Pb at all bombarding energies *-‘O) while for 

the corresponding ‘2C+20sPb transfer reactions the absolute values were 

reproduced 1’-‘3). However, it is the conclusion of the present investigations that 

taking into account an energy dependence (eq. (2.6)) of the depth of the nuclear 

part of the interaction U,, together with a consistent use of spectroscopic factors 

for the individual states at all bombarding energies and for all reactions lead to 

absolute agreement with the data. 

In a semiclassical formalism we have furthermore derived a simple estimate of 

the total cross section for a specific reaction channel in heavy-ion collisions, e.g. 

single-particle transfer. Also a quantitative description of the maximum of the 

reaction probability as a function of the distance of closest approach or impact 

parameter is obtained. 

Discussions with S. Landowne are gratefully acknowledged. 
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