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Abstract:

The formfactors associated with inelastic scattering of heavy ions are calculated *n terms of single-particle wavefunctions and the

corresponding shell model potential. The formalism parallels the one utilized in the description of one- and two-particle transfer

reactions, and can be incorporated in a nuclear field theory. The macroscopic formfactors for vibrational states commonly used in

the analysis of experiments are shown to be more accurate than hitherto assumed.
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1. Introduction

A basic quantity describing grazing collisions between heavy ions is the ion—ion potential. From
systematic analysis of elastic scattering data with the optical model one has determined the tail of
this potential. It seems to compare well with the potential obtained by folding the densities of the
two colliding nuclei with an effective nucleon-nucleon force (cf. e.g. [1]). The absorptive potential,
which is utilized to account for the depopulation of the entrance channel shows, on the other hand,
large variations from case to case.

Allowing the radii of the two ions to depend on the angles it is possible to obtain a description of
inelastic processes (cf. e.g. [2]). The associated complex formfactors are proportional, for the case
of monopole—multipole excitations, to the static or dynamic deformation of the nuclear systems,
the radial dependence being given by the derivative of the optical potential. This macroscopic model
of inelastic processes, which has been very successful in the analysis of experimental data, implies a
proportionality between the variation of the density and the variation of the nuclear potential (cf.
ref. [3]).

A rather detailed microscopic description of the different collective modes of excitation of the
nucleus exists, in particular of rotations and vibrations. In the present paper, the corresponding
formfactors are calculated in a representation which makes explicit reference to the individual
neutrons and protons. The collective nature of the states excited in the scattering process is contained
in the configuration mixing of the corresponding wavefunctions.

The inelastic scattering formfactors are thus calculated on the same footing as the one- and two-
particle transfer formfactors (cf. e.g. [4]). A question of special interest to be investigated is the
role played by the “hot orbitals”, i.e., orbitals which are particularly suited to respond to the
external probe in an inelastic process.

In section 2 we derive the general expression for the microscopic formfactors following closely
the notation utilized in ref. [4]. They are evaluated within the framework of nuclear structure
models in section 3 and appendix A. The resulting quantities can be directly used in first order
perturbation theory, or in a coupled channel calculation involving inelastic processes. The macro-
scopic formfactors corresponding to surface vibrations are derived in section 4, while the macroscopic
formfactors for deformed nuclei are dealt with in appendix C. A discussion of the theoretical aspects
of the comparison of these formfactors with the corresponding microscopic formfactors is presented
in section 5. In section 6 we show some examples where microscopic and macroscopic formfactors
are used to calculate differential cross-sections.

2. Microscopic calculation of the formfactors

We consider the process
b+B—->b' '+ B, Q.1

where b and B are two interacting ions. The primes on b and B indicate that the corresponding
nuclei are in excited states.
The basic quantity to be calculated is the amplitude
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where the wavefunctions xp}; and Y2 Mp describe the states of the nucleus b and B, respectively,
§, and { being the corresponding intrinsic coordinates.

The angular momentum of relative motion in channel (b + B) = § is denoted by l and it is
coupled to the total intrinsic angular momentum J; of the nuclei b and B. The resultmg channel spin
S is a conserved quantity. The corresponding quantltles associated with the channel (b’ + B')=§’
are indicated by the same symbols, but primed. The potential ¥, is the interaction between all the
nucleons in b with all the nucleons in B, while Uy is the expectation value of this quantity. Note
that the coordinate of relative motion of both channels coincide. We shall thus in the following drop
the label on this variable.

The integral in (2.2), usually referred to as the formfactor, can be expanded in tensor components,
ie.,

Fir®) = [ 48, d85 U o) VB, G Vop — Ug) Viag, o) V2 a1y ()

(2.3)
= J;}\‘ UsMaIM\IgMy) I My J'M' LM, O MIT'M") f ),
MM u
or equivalently
27+ DA+ 1
f ()= ( X ) z Mg IM\ I My Iy My M| LM,) QI MU'M') fp (r), Q4

('qu'-_l')‘('m-l-l)MbM

MpMy,

J and J' being the angular momenta transferred between the target and the residual nucleus and
between the projectile and the outgoing particle respectively, while A is the angular momentum
transferred between the orbital and the intrinsic motion. Since the function >{,J4 (r) is a tensor of
rank A, one can obtain the explicit dependence on two of its variables, utilizing an intrinsic system
whose z-axis is along the relative position vector r, i.e.

= Z, 22,(0, 0, 0) UZ ) ings. 2.5)

The formfactor [f,{f (P)]in¢,. is given by the same expression (2.4) except that it is evaluated in a
coordinate system where r is the quantization axis. Because of the axial symmetry around this vector.
only the term with g’ = 0 in (2.5) contributes and we thus define the radial formfactor by the
equation

@ =0 Y,,®, (2.6)
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where

an
20+ 1

7= U ) - 2.7)

Performing a reflection in a plane containing the r-axis it is seen that the formfactor (2.7) vanishes
unless

A+ 7 =even (2.8)

where 7 is the parity change taking place in the reaction. This selection rule is valid insofar as one
can neglect velocity dependent interactions, in particular the interactions inducing magnetic excita-
tions (cf. ref. [5] section IV.5).

In order to express the formfactor (2.7) in terms of the single-particle degrees of freedom we use
the fractional parentage expansions

Vi mpcs Tics §1) = c,-z e MjmllyMg) 95O (ryc. §1) Wi w8 (2.9)
m
and
U2 i Car oo = 2 LM Uy M) ¥ (rse, §2) US40 G, (2.10)
cjm
and correspondingly for the excited states. Inserting these expansions in (2.3) we find
fbﬁ' (= [f{}B' (r)]target + [fﬁﬁ' (r)]projectile + [fiiﬁ' (r)]mutual + [fl'ﬁﬁ' (r)]recoil’ 2.1
where

[f35 ") )iarger = 8(b, b)) 2 oMy millgMg) UoMe ja molly My [ B (7, §0) Uy (1)
£

] m2
C’ml!mz 2

X PO (ro, $1) d3ry dy, (2.12)

gives rise to target excitation while

g ] rojectite = 6(B, BY) 2 M, jymy L M) UM jom, I M) O (r1e, 1) U,g(rp)
BB p ,

]2m2
cs mlrm2

X @, (rye, &) d3ry diy, (2.13)

induces projectile excitation.

In the above expressions Uj; indicates the expectation value of the interaction V;; over all coordi-
nates not specified. The quantity U,y (r,,) is thus the expectation value of the interaction ¥V} ({,, 7,.,
r) over the degrees of freedom of ¢ and of particle 2, i.e., it is the shell model potential for the
particle 1 movingin b. We have assumed that these expectation values do not depend on the magnetic
quantum numbers.

The third term in (2.11) indicates mutual excitation, being non-diagonal in both target and pro-
jectile quantum numbers. The main term here is the matrix element of V,(r;,).

The fourth term is given by
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The different non-diagonal contributions arize as recoil effects due to the fact thatr = r g is kept
fixed in evaluating the formfactor. For instance, the first and second terms in (2.14) induce target
excitations. They can be included in (2.12) by substituting U, (r,,) by

my ny

r+—r,
A

Up(ry) + UbC(
B

) ~ Uy () +

— 1o VU, (), 2.15)
mgy

where my and m, are the masses of B and particle 1 respectively. Thus, the recoil term to lowest
order contributes only to dipole excitation.

In deriving (2.11) we have neglected terms nondiagonal in the cores ¢ and C. These terms are
diagonal in the particle states i.e., the terms non-diagonal in ¢ are diagonal in the state of particle 2
(but not necessarily in particle 1). If the non-diagonal terms in ¢ and C are important one should
exhibit more particle degrees of freedom until the remaining core is inert, and the total formfactor
would by the sum of formfactors of the type (2.11)—(2.15) over all valence particles.

In the following we neglect the mutual excitation as well as the recoil term (2.14). For target
excitation we thus have

fog ) = Z C*(Igay; Iy) CUgay; ) IoMajymy | IgMp) UM jama\lgMp)
Cjrmyjamy (2.16)
X [dor dgy 8% (@2, r1c, §0 Uy (rip) 6, @1, Fic, £
where according to the notation utilized™ in ref. [4]
PR (rics §1) = Clcag; Ip) 95, (a2;7,:81) (2.17)
and
OB (ric, £1) = CUgay; I) 6, (@157, 1) (2.18)
The quantity C is the single-particle spectroscopic amplitude defined as
Clqay; Ig) = Lyllaj (aN*A/ 20 + 1. (2.19)

Ta consistency between the phase conventions used in ref. [4] for states defined in second quantization or in configuration space is
achieved only by giving the radial wave function R I(r) a phase il, and table 3 and 4 of that reference should be changed accordingly.
In the present paper we consistently use the so-called Condon and Shortley convention.
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Here a“ml(al) creates a particle in the state a,, m,, where @, stands for the radial, orbital and total
angular momentum quantum numbers n,, /; and j, respectively. The associated wavefunction in

configuration space is
¢]((1:r)n1(al; r1c§ §l) = R((f';)(rlc) [Yh (flc) X(fl)]jxml ’ (220)

where the square bracket indicates vector coupling. The function R‘(l‘i)(rlc) is the normalized radial
wavefunction while x(¢,) is the spin function.
We can rewrite (2.16) in the form

Jog @) = c/ Z \ C*(cay; I'y) Ccay; Ig) UcMcjymy\pMp) TcMciymaIgMp) Gym N — uliamy)
1m1j2ma Ay
(_&‘ ( a2)7\° 1

XS i , 2.2
where the single-particle formfactor is defined by
ra QA+ 1)¢ _ , - .

L) =T.2_T (—DrH mxzr:nz GimX — H|]2m2>jd371 d§, ¢,(;)m2(az;"1c§1) U (riy)

X ¢](‘?ml(a1 > "lcfl) (2.22)

Formulating this result in second quantization we generahze Jog tO include the excitation of corre-
lated states. We thus define an operator f(r) such that its matr1x elements are equal to (2.16), i.e.

f=3 (iprurm¥atl

ayaz 2)( I I
Au

£22910) (03 a3) b7 @) g joon, -0 (2.23)

where b; 1m1(al) =(—yrtm+ ™a; _,, createsahole in the orbital a; and where

[a (az)b L@l = Z Gamajimi\wd a ,2,,,2(02) b,lml(al) (—1y1- ’2+)‘+"[a+(‘11)b (az)];\ e

mymy
(2.24)
The quantity w, is the parity of the single particle state. One may easily verify the identity
(IgMg|f | IgMy) = fop (). (2.25)

The expression (2.22) for the single particle formfactor appearing in (2.23) can be reduced making
use of the single-particle wavefunction (2.20) and of the relation

L Iy N\([i, /1 A (=)y2-n .
=_ - 1+
(0 0 o){l1 I 5} T oL T oy ¥ AR08+ L + A, even).

(2.26)
One thus finds

LRI = [210) Yy, (),
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with

229 =TV QN+ D27, + D(=1Y27 V2,47, — 3N0) 8(I, + I, + X, even) j r2.dr,
/]

1
X jd(cos 0) R‘ﬁ?*(rlc) U, &1, +1r* —2rr, cos 6) R‘S?(rlc) P, (cos 0). 2.27)

Since we work with real radial wavefunctions the formfactor (2.27) is real and satisfies the general
symmetry property

Rrear) = (=1)1=n /25' . (2.28)

An alternative way of writing the formfactor (2.23) is

f0) = [U () ) dry, (2.29)
where the density operator p is defined by

P = 2 081 68 1 (@231 808y, @13 F1e §0) 8y (@2) @) (@), (2.30)

aay
nymy
[t should be noted that the diagonal matrix elements of (2.23) and (2.29) are nonvanishing, in
contrast to the diagonal part of (2.3) which is zero. The diagonal part of (2.29) is the ion—ion
potential as obtained by folding.

As an example of the formalism derived above we consider first formfactors for two particles
outside closed shell. We assume that the core of the nucleus remains inert during the process of
excitation. The generalization to the case where ground state correlations are included is discussed
below. The ground state is described by the wavefunction

laf; (1) a}(a1)]oo

I, My = 100) = g X(ayay; I, = 0) \/7 |0), (2.31)

where X is the amplitude of the different two-particle configurations and the square brackets
indicate the vector coupling of the two angular momenta to I; = My = 0. The state |0) indicates the
closed shell system, which is also the vacuum of the operators ajfn. The wavefunction of the excited
state is given by

LMy = I\w = > X@az; 1, = N) la} (ay) a}(a))),, o).

a =asz 1 43

(2.32)

The matrix element of the operator (2.23) between the two states defined above can be written as

Olf100) = fy (r)

_yT S Lt Xeah [X(alal;O)+ [ (22823 0)

azza; 2A+1 \/1 + 8(ay, ap) \/2]1 F1 (- ) \/_ f}\l 2(r) (2.33)
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3. Phonon excitation

The inelastic formfactors were derived in the previous section in terms of wavefunctions expressed
in a fermion basis. It has proved useful to describe the nucleus in terms of elementary modes of
excitation where both fermion and boson degrees of freedom are utilized [3]. The two types of
bosons entering in this picture are those corresponding to correlated particle-hole states (wavy line
in fig. 1) and correlated two particle states (double arrowed line in fig. 1). The field generated by the
projectile can, in this picture, either change the state of motion of a particle as for instance in graphs
(a) and (f) of fig. 1 or it can create a particle-hole boson, as in graphs (b) and (d).

The formfactor (2.33) calculated in the previous section corresponds to the evaluation of graph
(a). The quantity X(a,a,; 0) is the amplitude for the ground state boson on the configuration (a, a,)
while X(a,a,; \) is the amplitude describing the configuration (g,, a,) in the excited state A (cf.
egs. (2.32) and (2.31)).

In order to evaluate graph (b) we should recast the operator (2.23) in terms of the boson operators.
In the random phase approximation (RPA) the boson operator is defined as

)= > {X(@ya,; VTR (ga) + (=1 Y, (ga; M T, _ (g0}, G3.D

ajay
b B
A A A
R
VR
o] ==
(c)
A a
34
(f)

A lay A a, A
2
* == 2| x-- * -
e ———
3 34 ay

a, A A 2 A She
*-—= ———-X

Yemm e
34

(h) (i) (j) (k)

Fig. 1. Graphical representation of inelastic scattering. The graphs (a)—(i) represent the excitation of the target nucleus through the
field of the projectile, while (j) and (k) represent excitation of both systems. The excitation of the pairing vibration in (a) takes place
through a particle excitation, after the phonon has been decomposed into a two-particle state. The graph (b) indicates the excitation
of a surface vibrational phonon in a closed systems. Two of the graphs representing the higher order corrections to this process are
depicted in (c).

The graphs (d)—(i) indicate the excitation of a surface vibrational mode in an odd system. The lowest order graph in (d) is domi-
nant, if the phonon is strongly collective.

The graph (j) indicates the second order process in which the phonon is excited in both target and projectile (simultaneous
excitations), while graph (k) is the mutual excitation of two phonons taking place through the interaction fﬂﬂ’ M mutuar i (2-11).
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acting on the correlated ground state |0) defined by the relation
Fw(n)lf)) =0. (3.2)

In the following we use the convention as in (3.1) that the index k is used for particle states and the
index i for hole states. The quantities X and Y are the forward-going and backward-going amplitudes
and are obtained by diagonalizing the residual Hamiltonian in RPA. The index n indicates the corre-
sponding eigenvalue. The operator I’;f#(a1 , @) is defined as

(@) = la] (a) bjiap],,- (3.3)
From the commutation relations

[Ty, (), T, (m)] = 8(n, m), 3.4
and

[Ty. (), Ty, ()1 = [T'F, (), T, (m)] = (3.5)

we can express the particle-hole operator (3.3) in terms of the collective operators I‘{#(n) and I'; ,(n).
One thus obtains:

I (aa) = Z [X,(a,a; M) T, () — (=1 Y, (apa; N T\ _,(m)]. (3.6)
Observing that the formfactor (2.23) can be rewritten as

f= 2 :
a1>a2 @A+ 1)1 + 8(ay, ay)
+ (=D (27, + DV2 £ [af;(ay) b} @)y _ 3,

and utilizing the relations (2.24) and (2.28) we obtain the following expression for the formfactor in
terms of the boson operator (3.1)

(=DM E (=1 (27, + DY2 f129() [af (@) bfi(aD], _,

2 1 A+ ~

) = 2\/2>\+1( AR @) DY)+ (-1D* T, _ ()], (3.7)
where

ﬁ(’“(r)=a§k 2‘{_'__1 (=Dm f{ke4(r) [X,(qa;N) — Y, (qa;;0)]. (3.8)

To lowest order the graph 1(b) or the corresponding matrix element of (3.7), A\ulf10), describes the
excitation of vibrational quanta. In a closed shell system the corrections to this description arize
from graphs of type (c) in fig. 1. For an odd system the corresponding corrections are given by
graphs (e)—(i), the lowest order graph being given by (d).

To calculate systematically the formfactors within the framework of the nuclear field theory [6]
one thus has to utilize both the boson representation (3.7) of the formfactor and the fermion repre-
sentation

R 2
FeNe= 2 (- 1)““"1\—/—’2—#2“1 @) [a}(ay) b @]y, (3.9)

Au
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The generalization of (3.7) and (3.9) to the case of pairing deformed (superfluid) and shape deformed
nuclei is worked out in the appendix A.

Note that all formfactors include components responsible for Coulomb excitation. Thus for values
of r larger than the sum of the radii R, and Ry of the two nuclei b and B we may expand the
Coulomb part of the single-particle potential in (2.22) as

4qe
Up(Irie — 1= Zye 2 ——

& 5—)\—:_—1 Y;\‘M(ilc) YAM(IA') r’l‘c oAt , (3.10)

Z, being the charge number of the projectile. This leads to

dn Z e

@281 (p) = — DGl EMjr 2 Y, L (), 3.11
L) NGO DGl EM) P (3.11)
where
H(ENy) = elr’,‘C Yy u(P1). (3.12)
Inserting (3.11) in (3.8) we find for the Coulomb excitation of a phonon
dr Z, e
R = 2)\?:1 (=D Gl (ENI0) =21 Y, (P, (3.13)

where the collective reduced matrix element of the electric multipole operator is given by

BN EDN0 = 2 (—1)"2 [X, (21055 N) — Y, (@raz; V]G llenrc Vi (3.14)
aa
These quantities can be determined experimentally in a model independent way and thus provide a
crucial test of the description of the nuclear states. A microscopic description which reproduces these
numbers and at the same time reproduces the excitation energy is thus expected to lead also to a
total formfactor (3.8) which is more accurate than the macroscopic formfactors which have mainly
been used up to now.

The extent to which the micro- and macroscopic formfactors are the same will be studied in the
following sections.

In the following we give examples of inelastic formfactors associated with both collective and
non-collective vibrational states of 2°8Pb and !2°Sn. Non-collective refers, in the present context, to
states which are dominated by few components or states whose wavefunctions display destructive
interference. Only quadrupole and octupole excitations are considered.

The calculations were carried out diagonalizing a schematic multipole—multipole force including
both an isoscalar and an isovector term. The strength of the isoscalar force was chosen equal to the
selfconsistent value (cf. [3], chapter 6)

4 41 1 M
kA, 7=0)~= T ( “o

A
3 (1.224A-D 40+ \ g ) MeV. (3.15)

The ratio between the isoscalar and isovector strengths was set equal to (cf. refs. [3] and [7])

kA, 7= 1)/k(\, 7=0) = —0.45(3 + 2). (3.16)
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The particles were assumed to move in a harmonic oscillator potential and all AN =0 and 2 excita-
tions were included in the case of the quadrupole mode, while all AN = 1 and 3 excitations were
included in the case of the octupole vibrations. The calculations for 12°Sn were based on equation
(A.4) of appendix A. The quasiparticle occupation parameters, U, ¥V were determined according to
the standard BCS prescription. The spectra and wavefunctions for the collective 2+ states of 2%Pb
and 2%Sn are given in ref. [7]. The wavefunctions associated with the non-collective states utilized
in the calculations of formfactors below are given in table 1. Using the same parameters, the 3~
states of 29®Pb were calculated. The properties of some of these states are given in table 3 and the
corresponding wavefunctions are shown in table 4.

Table 1
Properties of the quadrupole non-collective states of 2°8Pb and 129Sn used in fig. 2.
The energies F are given in column 2. For details on the contents of the other
columns see the caption of table 3. The wavefunctions are given in table 2

E [ 4 N ALDNE  ALDINE R RE
Pb(2Y) 1273 266 0.56  0.61 -0.49 070 891
sn(2Y) 465 1.7 0.09  0.73 ~0.54 043  2.00

Table 2

Wavefunctions for two non-collective quadrupole modes of 12%8n and 298pb, respectively, utilized in connection with fig. 2. Each
configuration is characterized by the six quantum numbers ¢y = (W1, L1, J1) and a3 = (N2, L2, J2). The quantity DN indicates the
difference in the principal quantum number of the harmonic oscillator shells connected by the excitation. The forward-going and
backward-going amplitudes are denoted by X = X(ay, a2; A) and Y = Y(ay, a3; A), respectively. For more details confer ref. [71,
section 6. The quantity 27 = ¢1 labels neutron and proton excitations respectively

E=12.73 E =465

Nl L1 N N2 L2 J2 2T DN X Y Nl L1 N N2 L2 J2 2T DN X Y
1.0 40 45 00 60 65 +1 0 0.03 001 1.0 20 1.5 10 20 15 +1 0 0.08 0.02
1.0 30 35 00 50 55 -1 0 002 001 00 40 35 00 40 45 -1 0 0.08 0.01
00 60 65 00 40 45 -1 2 007 001 1.0 20 1.5 00 40 35 +1 0 0.37 0.03
00 60 55 00 40 35 -1 2 014 001 20 00 05 1.0 20 25 +1 O 041  0.02
1.0 40 4.5 1.0 20 25 -1 2 013 001 0.0 40 35 1.0 20 25 +1 0 0.05 —0.00
00 70 75 0.0 50 55 +1 2 047 001 10 30 35 00 50 55 +1 0 0.08 -0.02
1.0 50 55 0.0 50 45 +1 2 004 0.00 1.0 20 15 20 00 05 +1 0 —0.10 -0.03
10 40 45 00 40 35 -1 2 004 000 00 S0 55 00 50 55 +1 0 -018 -—0.04
10 40 45 00 40 35 +1 2 009 -0.00 1020 15 1020 25 +1 0 -023 -0.01
10 40 45 10 20 25 41 2 017 —o0o1 1.0 20 1.5 00 40 45 -1 0 -0.73 -0.03
v vy s : : 00 40 35 00 40 35 +1 0 -0.15 001
1.0 3.0 2.5 1.0 1.0 05 -1 2 006 -0.00 1.0 20 25 10 20 25 +1 0 -010 0.09

00 60 55 00 40 35 +1 2 016 -0.01
20 1.0 1.5 1.0 1.0 05 -1 2 0.02 -0.00 0.0 6.0 6.5 00 40 45 -1 2 -0.05 0.02
20 20 25 1.0 20 1.5 +1 2 0.02 -0.00 0.0 50 5.5 00 3.0 35 -1 2 0.03 -0.02
00 60 65 00 40 45 +1 2 0.05 -0.03

20 20 25 20 00 05 +1 2 0.04 -0.00
1.0 40 35 10 20 15 +1 2 006 -001 00 50 45 00 30 25 -1 2 0.03 —0.01
1.0 60 65 0.0 60 65 +1 2 002 -0.00 1.0 40 45 10 20 25 +1 2 0.03 —0.02

208py, (21) (non-collective)

1205, (2%) (non-collective)
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Table 3
Properties of octupole states in 208Pb. In columns 1 and 2 the energies E and centroids E.. within
the groups indicated are collected. The centroids are defined by £ = EiRiEi/(EiR i) where Ri are
the transition probabilities from the ground state given in column 7 (in single particle units). The
multipole mass moments for protons (#) and neutrons (#°) are displayed in column 3 and 4 in units
of (i/Mwg) = A3 fm?. In column § and 6 the neutron and proton particle-vibration coupling
strengths as defined in ref. [7] are given. In column 7 the ratio R = B(E3)/Bp, of the B(E3) transi-
tion probabilities in terms of single-particle units (B, = (7 /16m) e2R6 = 0.42 A2 ezfm6) are collected.
In the last column the oscillator strength (in Bgp MeV) is displayed. The states listed contribute
~80% of the total energy weighted sum rule. In the last row of this table are listed the properties
of the octupole non-collective state used in the calculation of the formfactors of fig. 2. The wave-
functions of three of the states are given in table 4

E E, F N IO IN B & TN RE
2.62 2.62 39.83 57.56 1.48 1.11 20.5 53.71
3.86 21.17 35.78 0.66 0.98 5.40 20.84
5.88 5.04 16.38 34.87 0.32 1.27 3.20 18.82
6.71 13.53 24.77 0.37 0.77 2.2 14.76

54.42

10.80 13.00 16.00 0.55 0.16 2.03 21.92

13.00 13.50 13.25 9.22 0.74 -0.34 2.10 27.30

14.95 19.41 22.50 0.85 0.13 4.50 67.28

116.50

27.32 -12.33 19.76 —1.43 2.41 1.80 49.18

29.03 28.81 —~11.75 17.79 -1.32 2.22 1.65 47.90

30.11 -12.26 16.65 -1.32 2.19 1.80 54.20

151.28
6.56 6.56 8.20 11.01 0.09 0.12 0.80 5.28

Utilizing the X and Y amplitudes of ref. [7] and tables 2 and 4 the formfactors for the transitions
from the ground state were calculated according to equations (3.8) and (A.4). The single-particle
formfactors f3192(r) were calculated using harmonic oscillator wavefunctions. The results are dis-
played in fig. 2.

For the quadrupole modes in '2°Sn and 2%Pb the formfactors for the lowest state, a member of
the giant isoscalar resonance and a non-collective state are given. A similar selection of states was
used for the case of octupole modes in Pb.

At large distances the formfactors display the smooth r~*~! dependence characteristic for
Coulomb excitation, the Coulomb excitation formfactor being given separately by a dash—dot curve
for the lowest state of each mode. The nuclear part (dashed curve) shows a rapid variation with r.
The two contributions have opposite sign and the formfactor thus vanishes at a point close to the
sum of the nuclear radii R, + Ry.

Although the magnitude of the different formfactors (in MeV) are quite different their shapes are
qualitatively independent of multipolarity and of excitation energy. To emphasize this similarity we
compare in fig. 3 some of the results shown in fig. 2. Quasielastic heavy ion reactions are sensitive
to the formfactors only in the external region for r- values larger than R, + Ry + 2 fm, where all
the nuclear formfactors shown are in fact almost identical except for the scale.
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Table 4
Wave function assaciated with three of the octupole states in 298Pb shown in table 3. For details see caption of table 2
E=262 E=3.86 £=6.56

N1 L1 J1 N2 L2 N2 2T DN X Y X Y X Y

00 6.0 6.5 00 50 55 -t 1 0.88  -0.06 -0.34 -0.04 -0.01 -0.01
1.0 40 45 1.0 3.0 25 +1 1 0.15  -0.02 -0.29 -0.01 -0.01 —0.00
00 50 45 1.0 20 1.5 -1 1 -0.15 0.03 ~0.65 0.03 0.02 0.00
1.0 4.0 45 20 10 15 +1 1 0.27 —0.06 0.51 -0.02 -0.04 -0.01
1.0 3.0 35 20 00 05 -1 1 -0.10 0.03 —0.20 0.02 0.02 0.00
00 6.0 55 1.0 3.0 25 +1 1 0.18 -0.06 0.17 -0.02 —-0.06 -0.01
1.0 40 45 00 50 45 +1 1 0.03 -0.01 0.02 -0.00 -0.03 -0.00
20 20 25 20 10 05 +1 1 0.08 -0.03 0.06 -0.01 -0.12  -0.00
00 70 175 00 60 65 +1 1 -0.17 0.07 -0.12 0.03 0.25 0.01
0.0 5.0 4.5 1.0 2.0 2.5 -1 1 0.02 -0.01 0.03 -0.01 0.87 —-0.00
20 20 25 1.0 3.0 25 +1 1 0.04 -0.02 0.03 -0.01 0.14 -0.00
1.0 40 45 1.0 3.0 35 +1 1 0.09 -0.04 0.05 -0.02 0.24 -0.01
1.0 4.0 35 20 10 05 +1 1 0.08 -0.04 0.05 -0.01 0.21 -0.01
00 60 55 00 5.0 45 +1 1 0.09 -0.04 0.05 -0.02 0.15 -0.01
00 5.0 45 00 40 35 -1 1 -0.05 0.02 -0.06 0.02 -0.05 0.00
20 20 25 20 10 15 +1 1 0.05 -0.02 0.03 -0.01 0.06 —0.00
1.0 40 35 1.0 3.0 25 +1 1 006 -0.03 0.04 —-0.01 0.06 -0.00
1.0 30 25 20 00 05 =1 1 0.03 -0.02 0.04 -0.01 0.02 -0.00
30 00 0S5 1.0 30 25 +1 1 0.04 -0.02 0.02 -0.01 0.02 -0.00
20 20 15 1.0 30 25 +1 1 0.03 -0.02 0.02 -0.01 0.02 -0.00
20 20 15 20 10 15 +1 1 ~0.04 0.02 -0.02 0.01 -0.02 0.00
1.0 40 35 00 50 45 +1 1 0.03  -0.02 0.02 —-0.01 0.02 --0.00
20 20 25 10 30 35 +1 1 0.04 -0.02 0.02 -0.01 0.02 -0.00
1.0 40 45 00 50 55 -1 1 0.03 -0.02 0.03 -0.01 0.01 -0.00
1.0 40 45 00 50 55 +1 1 0.03 -0.02 0.02 -0.01 0.01 —0.00
00 80 85 00 S50 55 -1 3 -0.06 0.04 —-0.06 0.03 -0.02 0.00
20 20 15 0.0 5.0 45 +1 1 0.02 -0.01 0.01 -0.01 0.01 -0.00
1.0 S0 55 00 60 65 +1 1 -0.04 0.02 —0.02 0.01 -0.02 0.00
30 00 05 1.0 30 35 +1 1 0.03 -0.02 0.01 -0.01 0.01 -0.00
20 20 25 00 50 55 +1 1 0.02 -0.01 0.01 -0.01 0.01 -0.00
00 7.0 15 00 40 45 -1 3 0.03 -0.02 0.03 -0.02 0.01 -0.00
00 9.0 95 00 6.0 65 +1 3 0.06 —0.04 0.03 -0.02 0.02 -0.01
00 80 85 00 50 55 +1 3 -0.04 0.03 -0.02 0.01 -0.01 0.01
0.0 7.0 6.5 00 40 35 -1 3 0.02 -0.02 0.02 -0.01 0.00 -0.00
00 7.0 175 00 40 45 +1 3 0.03 -0.02 002 -0.01 0.01 -0.00
00 80 175 00 50 45 +1 3 ~0.03 0.03 -0.02 0.01 -0.01 0.00
00 70 6.5 00 40 35 +1 3 0.02 -0.02 0.01 -0.01 0.01 -0.00
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Fig. 3. Comparison between the different microscopic formfactors. In (a) the formfactor for the low-lying 2% state of 298Pb is com-
pared to the formfactor associated with the quadrupole giant resonance (cf. fig. 2(d) and (e)). In (b) a collective and a non-collective
formfactor for octupole vibrations are compared (cf. fig. 2(g) and 2(i)). In (c) we show the striking similarity of the nuclear part of
the formfactor for a quadrupole and an octupole state of 298Pb (cf. fig. 2(d) and 2(g)).

4. Macroscopic formfactors

The strongly collective states of spherical nuclei can be interpreted as vibrational states correspond-
ing to excitations of surface modes. In this macroscopic description the nuclear radius depends on
the direction through the expression

R, = Rl_(o) (1 + g a0 Y, _ 3,9 (—1)“) . “4.1)
M
The quantity R,.(°) is the average radius of the nucleus i while o, x(9) indicates the amplitude of the

vibrational mode of multipolarity A.
The Hamiltonian associated with these degrees of freedom is assumed to be [3]

1
= A 2 - 2
H=3 4D, 16, +1G Iy, =3 ‘2Dx Im 2 +1G, |aM|2], 4.2)
where =, , is the momentum conjugate to @, - The quantities D, and C, are the mass parameter and

the restoring force parameter, respectively. In terms of the boson creation and annihilation operators
¢y, and ¢, , the deformation parameters can be written as [3]

h
= [ ae Gt CIF oy, 43)
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where w, is the frequency of the mode w, =+/C, /D, .
The parameters entering in the definition of the collective variable (4.3) are determined from the
energy of the physical state and from the electromagnetic transition probability which determines

the matrix element of the multipole operator # (EX, ). This operator is related to the deformation
amplitude by

A
BN, ) = 2B L J—* L e L) (4.4)

where Ry is the Coulomb radius of nucleus i
RE ~1.2A}3 fm, (4.5)
A; and Z, being the mass and charge numbers.
In the macroscopic description the detailed interaction ¥,z between the nuclei b and B is
Vow = Vep + Vip. (4.6)
where ¥ indicates the Coulomb interaction. The nuclear interaction I, is assumed to be a func-

tion of the shortest distance between the nuclear surfaces. Neglecting terms quadratic in a,,, this
distance is given by

s =r— Ry(—F) — Ry(#), (4.7)

where R, and Ry are given by (4.1). Terms of similar order of magnitude (O(#iw, /2C, )) may arize
from a possible dependence of VN on the radii of curvature. For spherical nuclei discussed below it
is however a rather accurate approximation. The case of deformed nuclei, where the equilibrium
deformation is of order 0.3, will be discussed in the appendix.

In the following we consider only target excitation and drop the index i = B. The formfactor
associated with the excitation of the state |1, > with one quantum in the mode Au is then given by

fr) =, IVpl0y = N@) + S0, (4.8)

where |0) indicates the ground state.
The formfactor corresponding to the Coulomb part of (4.6) can be written (cf. also (3.13))

4nZe A= u(F)
f%%gaﬁﬁgMMMWMIVTL— (4.9)

The nuclear part fN(r) of the formfactor can be related to the nuclear part of the ion—ion potential
U,z(r). This is defined as

UN(r) = <01V, |0). (4.10)

We evaluate now fN(#) in terms of USB(r). From (4.3) and the corresponding definition for the
conjugate operator

d C
My, = i — = =i f=—2(c,, — (~DFef_ ) 4.11)
K dey,, Aiw, ™ K

we can express the phonon creation and annihilation operators in terms of o, , and m, ,, e.g.
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C, frw 0
= 1 e : 4.12
C}\I.l oo ( ) a}\ M \/2C}\ aaky ( )
The formfactor (4.8) is given by
i VN (s)
= (1, VN (5)I0) = (0 B), 0) = A o] —22== |0). 4.13
£ = A V)00 = Ol [c, ,(B), T /2 c < s, (B) (4.13)
Utilizing the relations
oVN (s VN (s
V() _ R VAP /oa(5) (4.14)

00, , or

and
(IMIaMIO>=\/hw,\/2C>\, (4.15)

we obtain the result

f(r)=—/ 2R Y, ()<| o

This expression, which has been widely used for the description of inelastic scattering, has been
considered as the lowest order term in an expansion in

g = (1,10, 10Y R d(log UR,)/dr, (4.17)

oUN
>= ~(Lylo, |0 R Y, () =2 (4.16)

i.e. in the ratio of (4.16) to (4.10). As it is seen from the above derivation this is not the case, the
result (4.16) being an exact expression for harmonic vibrations and for the nuclear interaction
(4.6)—(4.7). In other words (4.16) represents the first term, not in an expansion in g, but in (1|0,
This result is essential for the validity of the macroscopic treatment of inelastic scattering since the
parameter g is often of the order of unity.

The general matrix element between two many-phonon states is worked out in appendix B.

We have calculated the macroscopic formfactors as discussed above for some of the reactions
studied in fig. 2 and the results are given in fig. 4 together with the corresponding microscopic form-
factors. In all cases the ion—ion potential UN(r) was chosen to be the one determined from the
experimental analysis of the elastic scattering [9]. In the region of interest it agrees quite well with
the one of ref. [8]. The parameters of the Saxon—Woods potentials are given in the fig. 5 caption.

As it is seen from the figure the macroscopic and microscopic formfactors agree well, outside the
distance Ry + Ry + 2 fm, inside which no contribution to inelastic scattering is expected (cf. also
section 6).

The radial part of the formfactors (3.8) and (4.16) are real numbers and are the quantities to be
used in a coupled channel treatment of heavy ion reactions. In actual calculations, as e.g. DWBA
one takes into account in an empirical way the channels not treated explicitly by introducing an
imaginary potential. In elastic scattering the imaginary potential W essentially describes the depopu-
lation of the entrance channel. For inelastic scattering the excited state can be populated via the
neglected channels which effectively implies an imaginary contribution to the formfactor. Since the
coupling to the neglected channels (i.e. the formfactors) are correlated with the position of the
nuclear surface, one would in the macroscopic model expect that the imaginary part of the form-
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Fig. 4. Macroscopic formfactors for some of the reactions studied in fig. 2. They were calculated using equation (4.22) and the
potential determined from elastic scattering in references [9]-and [10], adjusting the matrix element of %y to agree with the micro-
scopic result for the matrix element of the multipole operator 4 (EN, u), which also agrees with the known experimental values. For
comparison we display also the corresponding microscopic formfactors taken from fig. 2. Similar good agreements between the two
types of formfactors are found using the empirical potential of ref. [8].
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factor is correlated to the imaginary part of the elastic potential W in the same way as the real part
of the formfactor is correlated to UN.
This is the standard prescription which will be used also in the applications presented in section 6.
The formfactors for strongly deformed nuclei, where the first order expansion in the deformation
parameter is not appropriate, are evaluated in appendix C.

5. Equivalence of macroscopic and microscopic formfactors for collective states

The numerical agreement between the macroscopic and microscopic formfactors shown in the
previous section is a natural consequence of the basic assumptions utilized in the RPA. In fact the
collective states are generated by the coupling between the particle degrees of freedom and the mean
field which in turn is produced by the particles themselves. The collective response of the nucleus to
an external field should therefore be the same whether one describes the system in terms of the
particle degrees of freedom or in terms of the collective degrees of freedom of the mean field or the
associated density.

In order to show this equivalence explicitly we use the expression (2.29) for the formfactor
operator. The diagonal matrix element of this operator is identical to the ion—ion potential as
calculated by folding, i.e.,

Upp(r) = QIf IO = [ d3r) U, () ©1pIO), (5.1
while the non-diagonal matrix element is given by
Oulf100 = [d3r, U, QulplO. (5.2)

We want to consider only the excitation of particle—hole bosons i.e., excitations generated by the
boson representation (f(r))p of the formfactor (cf. eq. (3.7)). The matrix elements of the correspond-
ing density-operator (p)g defined by

(g = [ U i) Bric))p 4371, (5.3)

can be written in terms of the amplitudes X and Y as

(n, 7\I~l|(lh’)3l00> = agi J.dfl ¢;:m,~ (airlcgl) ¢jkmk(akrlC§1) [Xn(aka,)\) - Yn(akai)\)] 5.4
myem;
X (1Yt met e (o —m jom [N — w.
The index g, indicate states above the Fermi surface while g; designates occupied states.
In the random phase approximation these amplitudes are given by
X, (a.a)N)

Y (@.a0) =+(—1)i A} (akHFAIIai)/(eak —€,F Hwl). (5.5)

They were obtained by diagonalizing the separable interaction [3]

H=k 2 F,F,, (5.6)
m



372 R.A. Broglia et al., Formfactors for inelastic scattering between heavy ions

where
aU
KFy, = —e (5.7)
Loy
is the single-particle field generated by the vibration. The quantity A}, indicating the particle-
vibration coupling strength
A1) _{ 4w, (n)e,, — € Wa, m IkF, lam)? V2 (5.8)
K lopaw ey — &) — oy '

micmj

In the actual calculations, the results of which were presented in section 3, one used instead of (5.7)
the field ~ YM(r), which has similar matrix elements as (5.7) except for a common factor.
One may write the matrix element of (5.7) appearing in (5.5) in the form

[-——a H ] ——-—a (5.9)
, a;m,y, .
dog,  * dost, >

where H, is the single-particle Hamiltonian being also a function of the deformation parameters ¢, .
The matrix elements (5.9) enter in the cranking expression for the mass parameter D, in (4.2)i.e.,

laymyIcFy lam) = a my aimi>= (€, — €,){axmy

Z [{ag mk|KF;\,1|¢1i’7'li)|2

oy (e, —€)3
e —Ca;

There are two limits in which we can prove the equivalence between the macroscopic and micro-
scopic formfacto'rs, utilizing the above expressions. In the first limit we assume 7w, < (eak — eai)',
i.e., the vibrational energy is much smaller than the particle—hole excitation energy. In the second
limit we assume that all particle excitations contributing to a given mode are degenerate i.e.,
€, —€, = Ae.

In both these situations one finds, utilizing the equations (5.5)—(5.10), that the matrix element
(5.4) reduces to

R hw 0
{n, Auel(p)g100) =\/2'C: agi jd§1 ¢;m,-(ai"1c§1) Dy @1 $1) ékmk m aimi>
Lo 5 R (5.11)
+ ¢]k mk(akrlc g‘l) ¢j,'m,'(airlC rl) ak mk m ai mi> ]
0
= — ({01pl0)) ¢nAply, ,100).
aon
The formfactor (5.2) is thus given by
0 . 0
Qpulf100y = 5——— ({0i£10%) (nAuley ,100) = o (Uyp(r) (nhpiey, ,100), (5.12)
Au Au

which is identical to (4.16).
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Although the two assumptions leading to this identity are not strictly fulfilled for the actual cal-
culations in section 3, the first assumption is the one relevant for the low-lying collective state, while
the second is more appropriate for the giant resonances.

The remaining difference between the calculated macroscopic and microscopic formfactors for
r >Ry + Ry + 2 fm, as seen from fig. 4, is however not expected to be related to the marginal ful-
filment of the above approximation. In fact the microscopic formfactors were calculated utilizing
harmonic oscillator wavefunctions which do not display the correct asymptotic behaviour. Also the
empirical determination of the ion—ion potential leaves some uncertainty as to the exponential slope
of this potential. The above contention is supported by the fact that the microscopic formfactors
associated with different multi-polarities (cf. fig.3(c)) are essentially identical.

It is an interesting observation that the formfactor for a collective state is not dominated by a
few particle—hole configurations, although the single particle formfactor corresponding to “hot
orbitals” of low angular momenta is much larger outside the nucleus than the single particle form-
factors involving orbitals of high angular momenta. This is because the amplitudes (X and Y) of
these configurations are generally larger than those of the former, the matrix elements of 0U/dr
being especially large between states of high angular momenta.

6. Differential cross-sections

In this section we show examples in which the formfactors are used to calculate differential cross-
sections for inelastic scattering,

The results for 104 MeV 0 ions scattered on 2%8Pb leading to the 2.62 MeV octupole vibration
is shown in fig. 5 utilizing the microscopic formfactor of fig. 2 and the macroscopic formfactor of
fig. 4. The angular distributions are very similar as expected from the similarity of the two form-
factors at distances larger than R, + Ry + 2 fm (cf. fig. 4(a)).

The angular distributions do not agree however with the experimental data [9]. Utilizing the
macroscopic formfactor including the contribution from the empirical imaginary part one obtains a
quantitative agreement as shown in fig. 5(b).

7. Conclusions

The rather detailed investigation carried out in this paper on the calculation of the microscopic
formfactors show that the macroscopic prescription in most cases is very accurate. This is not only
true for low-lying vibrational states as has been checked empirically, but it is also true for the excita-
tion of giant resonances and not-so-collective states. We have shown that this result is to be expected
in the random phase approximation for strongly collective states.

We have also shown that macroscopic formfactors for the excitation of vibrational states are more
accurate than hitherto assumed being an expansion in the small parameter a, , (vibrational ampli-
tude) and not in the apparent expansion parameter onR(O)/a, a is the diffuseness of the ion—ion
potential.

We want to acknowledge the help of P.F. Bortignon in the calculation of the microscopic wave-
functions and H. Esbensen and S. Kahana for valuable discussions.
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Fig 5. Theoretical and experimental differential cross-section associated with the excitation of the 2.62 MeV 3~ state in 298Pb with
104 MeV 10 jons. The calculations were carried out in the DWBA utilizing a Saxon—-Woods potential with parameters

V = —40 MeV r, =1.31fm a, =0.45 fm
W= ~15 MeV re =131 fm a,, = 0.45 fm.

In (a) the dashed curve shows the result using the real part of the macroscopic formfactor while the full drawn curve shows the result
using the microscopic formfactor of fig. 2(g). In (b) the imaginary part of the macroscopic formfactor was added to both formfactors.
The dots indicate the experimental results of ref. [9].

Appendix A: Microscopic formfactors for superfluid and deformed nuclei

In this appendix we calculate inelastic scattering of nuclei showing pairing (superfluid) and surface
deformation. For superfluid systems the nuclear states are described in the quasiparticle basis.

The quasiparticle creation and annihilation operators aj’;n and o, are defined by the unitary
transformation

a;;ml (a) = Uil(al) oﬁml(al) — (~1yin+m tm Vi1 (ay) %, - ml(al)’
b} o @) =V}, @) &, (@) + (=11 * ™Mt MU, (@) 0y, _, (@), (A.1)
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where U and V are the BCS occupation parameters. The quasiparticle operators define the vacuum
state |BCS) by the relation

ozim(a)IBCS) =0. (A.2)

In order to evaluate the formfactor for inelastic scattering on superfluid systems one should
express (2.23) in terms of these operators. Inserting (A.1) in (2.23) one finds

N 2j, + 1
1) =a§2 (=P et \L——Zihl KU (U, @) V, (a) [ of 1y, — V,(a2) U, (ap)
Au
X 18,8, Iy *+ (U, (@) Uj (a)) -V}, (ar) V. @Dled By, + (=10 V2@V, + 1
X 8(ay, ay) 6(A, 03}, (A.3)
where g7 = (—1)f+'"+”ai_m.

The first two terms induce two-quasiparticle excitations, while the third term induces single-
quasiparticle excitations and is relevant only for odd nuclei. The last term has only diagonal matrix
elements and leads to the ion—ion potential.

In superfluid systems the residual interactions produce collective states which are of similar
nature as those discussed in section 3, except that no distinction can be made between particle—
hole and two-particle or two-hole states.

Utilizing a relation of the type (3.6) but where F{”(alaz) indicates the two-quasiparticle creation
operator and I'y’ «(n) indicates the boson creation operator in the quasiparticle basis we obtain for
the boson representation of the formfactor an expression identical to (3.7) where the function (3.8)
is given by

~ (-Hm 2%, +1 . '
RO= 2 Trraas S T MO W@ V@ + Uy@) V@) X @)
- Y(az, 01;7\)]. (A-4)

This expression was used for the numerical evaluation of the formfactor for the excitation of the
states in '2°Sn displayed in fig. 2.

The macroscopic formfactors for superfluid systems are defined in the same way as for normal
systems, as it was done in section 4. The proof of the equivalence of the macroscopic and micro-
scopic formfactors can easily be generalized to include the present case of superfluid systems.

For deformed nuclei the nuclear states are given in terms of the wavefunctions x, in the intrinsic
frame. We consider only axially symmetric quadrupole deformations where [3]

2 + 1
wIBMB =\/67r2(1 : 6(KB, O)) {9?1331(3(19') XKB(g—) + (_1)1B+KB Q;?B'_KB (l?,) XKB(S‘)}' (A'S)

The variables ¥, denote the three Eulerian angles describing the rotation from the laboratory system
to the intrinsic frame, while Kj is the projection of the total angular momentum on the intrinsic z-
axis.

In order to evaluate the formfactor connecting states thus described, we express the operator
[af, (@3) bf (ap],, in (2.23) in terms of the creation operatorsa’* and b'* in the intrinsic frame i.e.,
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la}t (ay) b} (@))]y, = ZJ (8,) [a;}(ay) bj*a)],,. (A.6)

Next we expressa’t and b'" in terms of the creation operators of single-particle (Nilsson) states in
the deformed average potential. We thus obtain

4us (@) = 2 W) al, (), (A7)
and

b+, (@)= Z Wai(w,) bt (q). (A.8)
Utilizing (A.6)—(A.8) we can write the formfactor (2.23) as

for= 2. 2Y,,0) 2530 Z Pa(r) a, () by (@), (A.9)
M,V
wlwz

where the intrinsic formfactor is given by

f;f’vq(r)= Z (—1)’\+ﬂ1 2, +1

s Iron 1 1) Ve 1en N Wik(eg) Wi 2. (A.10)

Note that the summation over u can be performed leading to a D-function D} (8,) where 9; indicates
the rotation from the “intrinsic” system with z axis along r to the intrinsic system of the deformed
nucleus.

The residual interaction among the particles moving in the deformed potential gives rise to
collective vibrations of particle—hole type. This interaction can also be diagonalized in the RPA and
the calculation proceeds in a similar way as for the spherical case discussed in section 3, but for the
fact that the quadrupole—quadrupole interaction with K = 1 should be left out since the vibrational
amplitude oy, corresponds to a rigid rotation of a quadrupole deformed system which is not allowed
in the intrinsic frame. Thus, quadrupole modes are generated by the residual interaction only
corresponding tc - and y-vibrations.

In analogy to (3.1) we define the boson operator

CHn) = Z (X, (kD) TS (ki) + (1) Y, (k) T _ (ki)}, (A.11)
ki
where
L} (ki) = a (k) b (), (A.12)

with w, + w; = ». The indices & and i label the states above and below the Fermi surface, respec-
tively. The X and Y coefficients are determined by diagonalizing the residual interaction in the RPA.
The resulting formfactor obtained by inserting the inverse relation to (A.11) in (A.9) reads

—up

fer= 2 82,00 9% RO T + DT 0}, (A.13)

»V



R.A. Broglia et al., Formfactors for inelastic scattering between heavy ions 377

where
3= kz {X, (ki) — Y, (ki)} f}\’;"(r). (A.14)

This formfactor has no diagonal matrix elements. The excitations within the ground state rotational
band are generated by the diagonal matrix element in the intrinsic coordinates of the representation
(A.9) of the formfactor.

Most deformed nuclei are also superfluid. One has thus to work with intrinsic wavefunction cal-
culated in the quasiparticle representation. The quasiparticle creation and annihilation operators a*
and « are defined by the two-dimensional rotation in gauge space

at(p)=Up)al,(p) — V(p) ag(p) . (A.15)
and
b (p) = Up) ag(p) + V(p) o, (p). (A.16)

The formfactor in the fermion representation takes the form

fy= 3 22,00 9%() 3 O (UG V@) &, @) ol @) ~ V(0) U@ e, ) e (@)

WpWq
+ (U(p) U(g) + V(p) V(q)) o, ,P) g (CI) — V2(p) 8(p. 9)}. (A.17)

The last term induces excitations within the ground state band besides being responsible for the
ion—ion potential. It is noted that the excitations within the ground state rotational band does not
necessarily proceeds through quadrupole transitions although the average intrinsic potential was
assumed to be quadrupole deformed.

In order to get the boson representation of the formfactor (A.17) we have to work out the first
two terms of this expression in the way outlined in section 3. Thus the operator I'y .(@2a,) must be
replaced by the operator I'} (o, ;) creating a two quasi-particle state out of the deformed vacuum,
and the boson operators I “(n) must be replaced by the corresponding operator I'}'(n). Apart from
the coefficients W of the Nilson expansion, the result is thus similar to the one in (A.4).

Appendix B: Matrix elements between multi-phonon states

In this appendix we calculate the matrix element

1
My VNI, ) =\/ﬁ,*‘“, ©l(ey Yo VR(s) (cf, )™ e(0) (B.1)

nlmy,,!

of the nuclear interaction ¥'N between two many-phonon states.
Utilizing the result (4.13) i.e.,

lenes VN1 = <1,y 10 3V N/, , (B.2)

and defining
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[c}\l_p VN](") = [c}\u) [CMJ’ VN](n__ 1)] 3 (B-3)
we obtain
[ongs VNIO = ({1, loy,, [0 3/Boy, )" VN, (B.4)

Making use of this relation we can calculate the result of commuting all the destruction operators
with Nin eq. (B.1). Assuming n < m we obtain

n
Ol(ey, Y™™ PN (gt Y™ul0) = Z( ;“) Olley,, VNN~ P, , P (gt Y"Al0)

p=0

= Mha 0 yx O N +
=2 ( ; J o0 RO 7, —a—r—) O (e, (6, Y™ m10)

p=
(B.5)
Utilizing the boson commutation relation we obtain
(e P (e, y™auj0y = —miﬁ'—— (o, Y™ =P|0). (B.6)
u M (H’l}\# _ P)! u
The matrix element appearing in the summation in (B.5) can thus be written as
m. !
O|yN (O (c{“)"’MIO) = —a— (1] 2] (c{”)’"w‘PIO). (B.7)

my,, — P!

This matrix element can be calculated utilizing (B.4) i.e.
o \"w—P
©IVN (¢, y™u=P|0) = Ol(c, , )™+~ P YN0y =(—(1MIaMIO> RQY,, 5—) OIVN|0). (B.8)
r

The total matrix element (B.S) is thus equal to

(n, !'m, HY?
<"17W|VN|m;\“>= Z Au Al
p=0 p! (”M — p)! (m,\” - p)!

o\ Autrmau—2p
X (Y ynu P (E)

(—Ixulo ,10) RQymaa ¥ mu—2p (Y, ymaw =P

UN. (B.9)

Appendix C: Macroscopic formfactors for deformed nuclei

For deformed nuclei the macroscopic description of the formfactors is most conveniently worked
out utilizing a formulation analogous to (2.29). We thus introduce the ion—ion potential as a func-
tion of the deformation parameters of the form

Ur, o4,) = [ oy, ay,) Uy (' — rl) &3 (C.1)

In evaluating the integral (C.1) we use a coordinate system in which the z-axis is along the sym-
metry axis of the equilibrium deformation. We thus assume that
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ppr, ay,) = PB(’ - Rg)[l + (a(z"g +ay) Yo+t an(Yp+ Y5 )+ z ay, va]), (C.2)
Az23,p
where afJ is the equilibrium deformation. The vibrational amplitudes a,o and a,, give rise to §- and
v-vibrations respectively.
The formfactor for excitations within the ground state rotational band are given by taking matrix
elements of (C.1) between wavefunctions of the type (A.5). We shall consider even nuclei and
write the wavefunction in the form

1
M) = 2= aip (9)In, ) (C3)

where |nA») indicates a state with zero (n = 0) or one (n = 1) quantum of multipolarity A and K-
quantum number », i.€. an eigenstate of the vibrations in the variable q,,,.
The formfactor for excitations within the ground state rotational band is given by

f21 +1 .
UpOMg|Upg(r, 2, )I000) = /22— [d39, @ [BU(,) Uist(r, 7+ 3, o)), (C.4)

where the ion—ion potential in the intrinsic frame is defined by
Uist(r) = [d3 (0001p(+')1000) Uy (1" —rl). (C.5)

This quantity is a function of r and the angle between r and the intrinsic symmetry axis (3).
The expression (C.4) can be calculated making use of the relation

238 o(8) = g DB o (00, ¥) 9B (9, (C.6)

where the three Eulerian angles (¢, €, ¢) indicate the rotation from the laboratory system to a
system with z-axis along r, while the Eulerian angles 9; indicate the orientation of the intrinsic
system with respect to this coordinate system.

Inserting (C.6) in (C.4), the integration over two of the Eulerian angles can be performed and we
find

(Ig0M| Uy (r, @, ,)1000) =f,B(r) Y,"I;MB(r“), .7
with
fiy®) =/ [sin ' 49" Py_(cos ') Uint(r, o', o). (C.8)
The non-diagonal matrix elements of (C.1) in the intrinsic states can be treated in the same way
as the non-diagonal matrix element in section 4, i.e. one may use
(1w[pl000) = =R Yy (*") (1Avla,,|000) 3¢0|pl0)/ar', (C.9)

which holds to the same degree of accuracy as (4.16).

The formfactor (C.8) can be evaluated analytically if we use an exponential ion—ion potential of
the form

UII:IB(r) = _SR e~(r—Ry —RB)/"’ (C.10)
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where (cf. ref. [8]) S =~ 50 MeV/fm and @ =~ 0.63 fm. The quantity R is given by [11]
R=(c) + Py V2 (P + Py V2, (C.1D

where the c’s are related to the radii of curvature at the point of contact between b and B. We shall
assume that b is spherical i.e., R, is constant and
C}I):CE:l/Rb' (C12)

For the radius Ry of nucleus B we assume the angular dependence corresponding to an axially
deformed equilibrium shape i.e., in the intrinsic frame

Ry = RO(1 + e,P,(cos 9", (C.13)
with
€ =+/5/4ma$y. (C.14)

The quantities cl‘f and ¢P are then the principal rates of curvature at the point of contact. We shall
use the expression

R, = Ry Ry (1 — ByP,(cos ©) (C.15)
NI ) — D2l . .
with
2R
B, b (C.16)

"R, +RQ ¥
which is correct to first order in B,.

Inserting (C.13) and (C.15) in (C.10) we find in the intrinsic frame
©

Ui“'(r, 8)=-S —=b__B (1
bB R, + Rl(;o)

— B, Py(cos 8)) exp {—(r — R, — RY (1 + €,P,(cos 9")))/a}.(C.17)

In evaluating the integral (C.8) it is not appropriate to expand the exponential in (C.17) in powers
of 3, since the expansion parameter

c=(RV%aye, (C.18)

is often of the order of magnitude of unity. The integral can however, be evaluated in terms of the
functions given in ref. {5] (page 219) i.e.,

1 N+ 1)/2)
_ CP (x) = eee—t—
q,(c)=1% f dx Py(x) e 2021 + 3)/2)

Z1

I+2 21+3 -3
e (3c)? 1F1(——_, C),

> (C.19)

where (F; is a confluent hypergeometric function.
- The quantities g,(c) satisfy the following recursion relation

21— 1) (21 + 3)
3¢

U+2)Q2I-1Dg;,,(0)= (1 —( )(2I+ Dgc)+UT—-1)Q@I+ 3)q;_,(c),

(C.20)
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and they can therefore be evaluated from g,(c) and q_,(c¢) which according to (C.19) are given by

T 3¢
wor=e Sl /]

1
q-2(c) = ——€°, (C.21H
3¢

where erf (x) is the error function. The functions g,(c) are given in fig. 6 for /=0, 2 and 4.
In order to evaluate the integral (C.8) in terms of ¢,(c) we note that the term proportional to
B, can be expressed in terms of dg,/dc. We may therefore, to first order in B, write the result

2aR
H0)=Vam (U ()ey =0, 41 (c (1 - m)) (€.22)
B b B

where (U{,‘{;(r))e2 - is the ion—ion potential for deformation zero.

The fact that all formfactors (C.22) have the same radial shape is a consequence of the exponen-
tial form of the ion—ion potential, which is expected to be a rather good approximation for heavy
ion reactions. Comparing with fig. 6 it is seen that the curvature effect, as was to be expected tends
to cancel the first term. Corrections to (C.22) are expected to arise from a possible variation of a
with angle and from a change in the value of ngm as compared to the value for non-deformed nucleil[8]

R®=1.233 4Y3 —0.978 A7/3. (C.23)

One might thus expect a correction due to volume conservation which, for the spheroidal shape
used, would lead to a radius parameter

R =R (1 —1€d), (C.24)

to lowest order in €3.

1.0
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Fig. 6. The functions q /(c) defined in eq. (C.19). These functions which describe the strength of the ion—ion potential and of the
formfactors for excitation within the ground state rotational band (cf. eq. (C.22)) are plotted as functions of the dimensionless
parameter ¢ defined in (C.18).
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Including this correction the expression (C.22) for the formfactor would read

frr) = /A (U, = 611( (l—ﬂ—))(l -

ROR, + RY)

a 2
el ) . (C.25)

For many deformed nuclei the ion—ion potential (UEB(r) = (47)7V2 fo(r)) according to this formula
is almost the same as the potential between the corresponding spherical nuclei. The deformation
implies a small increase in the effective range of interaction, but no change in the diffuseness para-
meter. These conclusions are based on the exponential form of the potential, and are only
expected to be correct for

r2 R, + R+ e, + 1.5 fm. (C.26)
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