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Imaginary potential for exotic nuclei
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The imaginary and polarization potential for reactions involving exotic nuclei is calculated in terms of
one-particle transfer channels. Special attention is devoted to transitions to the continuum since for exotic
nuclei the Fermi energy is very close to the continuum threshold.@S0556-2813~99!01903-2#
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I. INTRODUCTION

The optical potential is widely used in the analysis
elastic scattering data among heavy ions. In this approxi
tion, the coupling of the elastic channel to the reaction ch
nels is taken into account partly through an imaginary p
iW, which takes into account the depopulation of the e
trance channel, and partly through a modification of the r
part of the potential~polarization!. Since the population o
the exit channels depends on the bombarding energy t
two terms have an intrinsic energy dependence.

The optical potential is not only used to describe elas
scattering data but also to extract nuclear structure infor
tion from grazing reactions, usually through distorted wa
Born approximation~DWBA! calculations. This will be also
the case for exotic nuclei and thus it is quite important
know how the optical potential changes while one a
proaches the drip lines.

In this paper we will study the imaginary part of the o
tical potential and the correction to the corresponding r
part ~polarization term! due to transfer channels in reactio
involving exotic nuclei. The effect of the transfer channe
will be included by using the semiclassical model of Ref.@1#.
This proved to be quite successful for stable nuclei@2#. For
exotic nuclei the Fermi level is close to~or even immersed
in! the continuum and therefore we have to extend that se
classical approach to incorporate transitions also to the c
tinuum. In Sec. II we will briefly summarize the most impo
tant results of Refs.@1–3#, in Sec. III we will discuss the
transitions to the continuum, and in Sec. IV numerical ap
cations corresponding to reactions of calcium isotopes
124Sn target are presented.

II. SEMICLASSICAL THEORY FOR ABSORPTION
AND POLARIZATION

In this section we will briefly summarize the formalism
Refs. @1–3#. For convenience of presentation we will on
PRC 590556-2813/99/59~3!/1534~6!/$15.00
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consider the case of angular momentum transferl50, since
the generalization to other cases is straightforward.

The potential that is most commonly used in the opti
model analysis of elastic scattering is of the general form

U5V1DU5V1DV1 iW, ~1!

whereW is the absorptive potential andDV the polarization
potential that corrects the bare real potentialV. The elastic
scattering amplitude can be written in general as

f aa5
i

2k(
l

~2l 21!Pl~cosu!~12e22ib laaa
l ! ~2!

whereb l is the real phase shift due to the bare real poten
V andaaa

l is the reaction amplitude for the elastic chann
Up to second order in semiclassical perturbation theory
amplitude may be written in the form

aaa
l 512

1

\2(
g
E

2`

1`

dtVag@r ~ t !#e2 ivgt

3E
2`

t

dt8Vga@r ~ t8!#eivgt8, ~3!

whereVag specifies the form factor that couples the entran
channela (Ea50) with the intermediate channelg at an
energyEg5\vg . The integration over time is carried ou
along the classical trajectory corresponding to the imp
parameterr5 l /k, wherek is the asymptotic wave numbe
in the entrance channel, i.e., with standard notationk
5(2mE/\2)1/2.

In the optical model approximation the effect of the co
pling is taken into account by modifying the potentialV by
an amountDU such that the phase shiftb̃ l , calculated with
the new potential, satisfy the relation
1534 ©1999 The American Physical Society
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e2i b̃ l5e2ib laaa . ~4!

In the spirit of the semiclassical approximation one can w

e2i b̃ l5e2ib lH 12
i

\E2`

1`

dtDUJ ~5!

and thus, from a simple comparison between the above r
tions, one obtains

E
2`

1`

dtDU52
i

\(
g
E

2`

1`

dtVag@r ~ t !#e2 ivgt

3E
2`

t

dt8Vga@r ~ t8!#eivgt8. ~6!

As it stands, this equation defines for each partial wavel the
value that should have the integral ofDU but not the func-
tion DU(r ) itself. In order to evaluate this we exploit the fa
that in the surface region the form factors are of the fo
Vag(r );e2r /ag and that the main contribution to the integr
is coming from distances close to the classical turning po
r 0 . Using for the trajectory its parabolic approximation

r 5r 01
1

2
r̈ 0t2, ~7!

where r̈ 0 is the radial acceleration at the distance of clos
approach, one gets~for more details see Refs.@1,3#!

DU52
i

\(
g

uVag~r !u2A r̈ 0

pag
I ~vg!, ~8!

where

I ~vg!5E
2`

1`

dt expS 2
r̈ 0

2ag
t22 ivgt D

3E
2`

t

dt8 expS 2
r̈ 0

2ag
t821 ivgt8D ~9!

is the function that weights the contribution of the differe
reaction channels to the imaginary and polarization part
the optical potential.

One-particle transfer channels are dominant to build
the imaginary part of the optical potential in the surface
gion @2#. In the case of stripping reactionsa1A→b1B,
wherea[b11 andB[A11, the form factor requires the
evaluation of integrals of the form

f a2a1
~r !5E d3r 1Afa2~r1A!* U1A~r 1A!fa1~r1b!, ~10!

wherefa1 andfa2 are the single particle wave functions
the projectile and target, respectively, andU1A(r 1A) is the
shell model potential binding the transferred nucleon to
nucleus A. The label a1 indicates the quantum numbe
(n1 ,l 1 , j 1 ,m1) in the projectilea while a2 indicates the lev-
els of the targetlikeB.

Up to this point we have not included any angular m
mentum in the formalism. This can be done expanding
e

la-

t

t

t
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p
-

e

-
e

form factor given above in spherical waves carrying angu
momentuml. The contribution to the optical potential be
comes

DU~r !5 (
a1a2 ,l

Aatr~a1 ,a2!

16pu r̈ 0u
~2 j 111!

3u2~a2 ,I A!v2~a1 ,I a!u f l
a2a1~r !u2~2 i !

3@gl~Q!1 ipl~Q!#. ~11!

Notice thatl in this expansion is the transfer angular m
mentum. The functionf l indicates the radial form factor o
multipolarity l, u andv are the occupation numbers of th
orbitals involved in the transition andatr'1.2 fm is the de-
caying length of the radial form factor. The sum has to
extended to all single particle states belonging to the pro
tile and to the target that can be populated in the react
Their contribution is weighted by the quantity2 i @gl(Q)
1 ipl(Q)# that corresponds to the integralI (v) introduced
above, but generalized to account also for the transfer an
lar momentuml. Details about this can be found in Ref
@1,3#. Here we would like to point out that in this formalism
the contribution from multinucleon transfer channels is
cluded insofar as the transfer proceeds via a succes
mechanism. The contribution of pair correlations~transfer of
correlated pairs! is not included in the formalism. Howeve
pairing correlations are mostly felt by the ground state a
nearby levels, and the corresponding transitions are in g
eral hindered byQ-value effects.

In a similar fashion one can evaluate the contribution~11!
corresponding to pick-up reaction channels. The poten
DU is obtained by adding the contribution coming from a
the proton and neutron stripping and pick-up reactions.

III. THE CONTINUUM

Close to the drip lines of protons and neutrons the ene
of the last occupied orbit may be very close to the continu
threshold. As an illustrative example, we show in Fig. 1 t
neutron and proton single particle energies in calcium i
topes. The lightest of these isotopes lies on the proton
line while the heaviest one is a neutron drip-line nucle
The displayed single particle energies have being calcula
by using the parametrization@4# of the shell model potential
i.e.,

Vsm~r !5V~r !2l
lc

2

2

1

r

dV~r !

dr
~sW• lW ! ~12!

with

V~r !5
2V0

11exp@~r 2R!/a#
, ~13!

where the radius is given byR5r 0A1/3, lc5\/Mc is the
reduced Compton wavelength, andM the reduced mass o
the nucleons moving around the (A21) core. The strength
of the volume term is given by

V0549.6S 120.86
N2Z

N1ZD ~14!
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FIG. 1. Neutron~bottom! and proton~top!
single particle levels around the Fermi surface f
calcium isotopes. The Woods-Saxon potential
also shown. The dark gray region indicates t
occupied single-particle orbits, while the ligh
gray indicates the region of bound states.
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for neutrons and by

V0549.6S 110.86
N2Z

N1ZD ~15!

for protons. The other parameters arer 051.347 fm, r 0
sl

51.31 fm, a50.7 fm, andl535 for neutrons while for
protons it isr 051.275 fm, r 0

sl51.32 fm, a50.7 fm, and
l536. Of course for protons one has to add the correspo
ing Coulomb term.

As mentioned above, one can see from Fig. 1 that nu
on the drip lines are likely to be excited by the transfer
action onto continuum states. This feature has to be inco
rated into the formalism.

The inclusion of the continuum in quantum processes
very difficult undertaking which has been attacked by usin
variety of approaches~see Refs.@5–8#!. Within any of these
methods the continuum is replaced by a set of discrete st
The form factor corresponding to transitions into the co
tinuum can then be written as
d-

ei
-
o-

a
a

es.
-

f a2a1
~E2 ,r !5E d3r 1Afa2~E2 ,r1A!* U1A~r 1A!fa1~r1b!,

~16!

where fa2(E2 ,r1A) is the properly normalized scatterin
wave function at the bombarding energyE2 @9#.

Expanding the form factor~16! in spherical harmonics
one obtains for the contribution to the optical model the e
pression

DUcont~r !5 (
a1 ,a2 ,l

~2 j 111!v2~a1 ,I a!

3E
0

`

dE2Aatr~a1 ,a2!

16pu r̈ 0u
u f l

a2a1~E2 ,r !u2

3~2 i !@gl~Q!1 ipl~Q!#. ~17!

To obtain this equation we assumed that also in this case
form factor has an exponential decaying behavior. This
indeed the case, as can be seen in Fig. 2 where some r
sentative examples are shown.
-
p
n
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n
m

FIG. 2. One-particle transfer form factors in
volving transitions to the continuum. In the to
row are shown the form factors for neutro
pick-up reactions corresponding to the transitio
from the state 2d3/2 at 28.5 MeV in 124Sn to the
indicated states in the continuum of36Ca. In the
bottom row are shown the form factors for proto
stripping corresponding to the transitions fro
the state 1d1/2 in 36Ca at20.5 MeV to the indi-
cated continuum states in124Sn. The labels of the
different curves indicate the correspondingl
transfer.



sh
o
at
tio

e
u

rr
e

or
ra
c
nd

en
co

ng
th
to
p

o
m

t
f
t

ure
s a
nd

nce
lts

ase
ibed
d-

e
the

ture
a-
ces,
ng

rre

t
-

f

PRC 59 1537IMAGINARY POTENTIAL FOR EXOTIC NUCLEI
The implementation of Eq.~17! is very demanding if
there are narrow resonances, as indeed often occurs in
model potentials. In such a case it becomes difficult to kn
a priori the stepDE2 to perform the energy integral, since
the position of the resonance the scattering wave func
increases enormously in a very small energy interval.

The presence of narrow resonances is a common prop
of shell model potentials both for stable and drip-lines n
clei. As an example we show in Table I resonances co
sponding to different (l , j ) values that we evaluated for th
nuclei 36Ca and124Sn using the codeESTAR @10#. For some
of these resonances the width is very small and to perf
the integration over the energy within a reasonable accu
one has to use such a small step of integration that the
culation becomes too lengthy. It is thus important to fi
another strategy to carry out that integration.

In order to analyze this problem we first study the dep
dence of the total cross section to populate states in the
tinuum as a function of their energy~which we callE2). This
is easily done in first order perturbation theory by applyi
the formalism presented above. Here we only recall that
cross section is proportional to the integral of the form fac
along the classical trajectory modulus square. As an exam
we consider a proton stripping reaction in the collision
20Ne on 208Pb at a bombarding energy close to the Coulo
barrier. Using the Woods-Saxon parameter of Ref.@4# we
found in 208Pb a narrow proton resonance corresponding
the statej 15/2 at an energy of 3.866 MeV and a width o
0.001 MeV. We then calculated the total cross section

FIG. 3. Total cross section as a function of the energy co
sponding to the transfer of a proton in20Ne to the state (l , j ) lying
in the continuum part of the spectrum of208Pb. The values of (l , j )
are indicated in the figure. For the state with the larger width~right
part! the cross section has been multiplied by a factor 103. The full
line is a Breit-Wigner distribution with parameters corresponding
the complex energy of the resonance (l , j ). The stars are the calcu
lated values.

TABLE I. Resonance states for protons in36Ca and124Sn. The
label n in the single particle state (nl j ) indicates the number o
nodes of the wave function in the inner region of the potential.

36Ca 124Sn
ER ~MeV! G ~MeV! ER ~MeV! G ~MeV!

1 f 7/2 2.819 0.0025 2f 7/2 1.1017 5.867310214

2p3/2 3.827 0.4857 1i 13/2 3.4836 2.31431028

2p1/2 5.089 1.5544 3p3/2 3.4999 8.87031024

2d5/2 7.709 4.9022 1h9/2 3.6083 1.71731027

1 f 5/2 9.894 1.1741 3f 5/2 5.4078 4.57131022
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populate this state by varying the energyE2 around the value
3.866 MeV. The resulting cross section as a function ofE2 is
shown on the left hand side of Fig. 3. The stars on this fig
indicate the calculated values while the continuous line i
Breit-Wigner distribution corresponding to the energy a
width of the resonance.

We performed the same calculation for the resona
h9/2, which is much wider than the previous one. The resu
are shown on the right-hand side of Fig. 3. Even in this c
the energy dependence of the cross section is well descr
by a Breit-Wigner distribution with parameters correspon
ing to the complex energy of the resonance.

From these plots one sees that for a given resonanca
[( l j ) the cross section can be parametrized according to
expression

s~E2!5
Ga

2

4~E22Ea!21Ga
2 s~Ea!, ~18!

where we have indicated withEa the real part of the energy
of the resonance,Ga its width ands(Ea) is the value of the
cross section at the resonance. This is an important fea
since it will allow us to evaluate the imaginary and polariz
tion potentials considering only bound states and resonan
without performing the energy integral. Indeed, by defini
the form factor of a resonance as

-

o

FIG. 4. Absorption~full line! and polarization potential~dash
line! for the reaction of the indicated Calcium isotopes on124Sn.
The shaded area is the real potential. Notice that for36Ca the po-
larization potential becomes repulsive at large distances.



es

1538 PRC 59POLLAROLO, FERREIRA, LIOTTA, AND MAGLIONE
FIG. 5. Total absorption~full line! and the
corresponding contribution from bound stat
only ~dash line! for the reaction on124Sn.
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f a1a2
~Ea ,r !5ApGa

2
f a1a2

~Ea ,r !, ~19!

where the factorpGa /2 is the integral of the Breit-Wigne
distribution in Eq.~18! over the energy, we can calculate th
polarization potential by using Eq.~11! but now the sum has
to be extended also to the resonance states.

IV. RESULTS AND CONCLUSIONS

Since in drip-line nuclei excitations to states in the co
tinuum can readily occur, one may expect that in these nu
the parametrization of the optical potential does not foll
standard prescriptions, i.e., those that have been derive
stable nuclei@13#. In this section we will examine this ques
tion in detail. For this we will consider reactions involvin
stable as well as proton and neutron drip-line nuclei. We w
thus apply Eq.~11! and Eqs.~17!–~19! to study the correc-
tion to the optical potential for the collision of stable an
drip-line calcium isotopes on124Sn. To have a meaningfu
comparison in all cases we set the center of mass bomb
ing energy to be 10% over the nominal Coulomb barrier. T
choice of these reactions has been dictated by the fact
for the stable calcium isotopes there exist experime
@11,12# that have been analyzed within a generalization
the semiclassical model used in this paper.

Including all the neutron and proton bound states in
projectile as well as in the target and all the resonances
energies below 20 MeV we have calculated the imagin
and polarization potentials for the reactions mention
above. The calculated imaginary part of the potential~full
line! is shown in Fig. 4 in comparison with the real part
the empirical optical potential~shaded area! taken from Ref.
@13#.

An important feature to be noticed in this figure is that f
drip-line nuclei the imaginary part of the potential is at lea
as large as the corresponding real part. In stable nuclei
stead, the real part is larger than the imaginary one b
factor of about 5. This indicates that in drip-line nuclei t
scattering is dominated by absorption and, therefore,
may need to use coupled channels techniques to ana
grazing reactions in those nuclei.

It is also worthwhile to notice that in the case of36Ca the
polarization potential~dotted line! has at large distances
-
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node and therefore beyond that point this potential redu
the attractive part of the optical potential. But this effe
which as seen in the figure is small, may strongly depe
upon the parameters of the shell model potential that de
the position of the single particle bound and resonance sta
This feature usually does not appear in stable nuclei, nei
in the other calcium isotopes of the figure. That is, only
36Ca the shape of the bare nucleus-nucleus interaction
be affected by the polarization.

As was pointed out above, the influence of the continu
should be relevant only for nuclei close to the drip line, sin
in stable nuclei the contribution of the continuum is strong
suppressed by the adiabatic cutoff functiongl(Q)1 ipl(Q)
in Eq. ~11!. This feature indeed appears in our calculatio
and, therefore, we will only present drip-line nuclei. Thus,
Fig. 5 a comparison between the imaginary potentials ca

FIG. 6. Elastic angular distribution~ratio to Rutherford! for the
collision of calcium isotopes on124Sn at the indicated bombardin
energy.
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FIG. 7. Total absorptionW and polarization
DV potentials for the case of60Ca corresponding
to different values of the diffusivity of the shel
model potential as discussed in the text.
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lated by including only bound states~dashed line! and bound
states plus the resonances~full line! is presented for36Ca and
60Ca. As one can see, at this low bombarding energy, o
for the proton drip-line nuclei the continuum plays a ro
while it is unimportant in all the other cases. In36Ca the
continuum actually is very important at large distances,
this region does not influence the shape of the elastic ang
distribution.

In Fig. 6 we show the elastic angular distribution provid
by these potentials. One sees that the relatively strong im
nary part of the potential corresponding to36Ca and60Ca, as
discussed above, is reflected in the modifications of the c
section at forward angles.

Finally, one may expect that in nuclei close to the neut
drip line the corresponding density presents a long tail fo
ing a ‘‘neutron skin.’’ This feature was analyzed in som
detail in Ref. @14# within the framework of a mean field
approach. It was found there that going from stable nucle
the ones on the neutron drip line there is a variation in
diffusivity a by a factor of as much as 2. At the same tim
the depthV0 of the potential diminishes by'10%. To see
cl

e
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t
lar

gi-

ss

n
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e

the effect of these changes on our potentials, we repeated
calculation for the nucleus60Ca by usinga51.3 fm and
decreasingV0 by 10%. As seen in Fig. 7 the correspondin
changes in the absorption and polarization potentials are
very important. The corresponding elastic cross sections
not affected.

In conclusion, in this paper we have generalized the f
malism of Refs.@1,3# to incorporate the contribution of th
continuum. This allows us to calculate the absorptive a
polarization potentials even for system at the limit of t
b-stability valley. For collisions with nuclei close to the ne
tron and proton drip lines the optical potential is dominat
by the absorption and the polarization potential may be
pulsive. This finding may indicate that for exotic nucl
coupled-channel calculations may be needed even to
scribe transfer processes.
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