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Imaginary potential for exotic nuclei
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The imaginary and polarization potential for reactions involving exotic nuclei is calculated in terms of
one-particle transfer channels. Special attention is devoted to transitions to the continuum since for exotic
nuclei the Fermi energy is very close to the continuum thresh80556-28139)01903-3

PACS numbd(s): 24.10.Ht

[. INTRODUCTION consider the case of angular momentum transfel0, since
the generalization to other cases is straightforward.

The optical potential is widely used in the analysis of The potential that is most commonly used in the optical
elastic scattering data among heavy ions. In this approximamodel analysis of elastic scattering is of the general form
tion, the coupling of the elastic channel to the reaction chan-
nels is taken into account partly through an imaginary part U=V+AU=V+AV+iW, 1)
iW, which takes into account the depopulation of the en-
trance channel, and partly through a modification of the realyhereWw is the absorptive potential anklV the polarization
part of the potentialpolarization. Since the population of potential that corrects the bare real potentaThe elastic

the exit channels depends on the bombarding energy thesgattering amplitude can be written in general as
two terms have an intrinsic energy dependence.

The optical potential is not only used to describe elastic i o
scattering data but also to extract nuclear structure informa- faa:ﬂE (21-1)Pi(cosf)(1—e ?Fa,,) (2
tion from grazing reactions, usually through distorted wave !

Born approximatiofDWBA) calculations. This will be also . . .
bp n ) whereg, is the real phase shift due to the bare real potential

the case for exotic nuclei and thus it is quite important to P ) _ i
V anda,, is the reaction amplitude for the elastic channel.

know how the optical potential changes while one ap- X . ) i ;
proaches the drip lines. Up to second order in semiclassical perturbation theory this

In this paper we will study the imaginary part of the op- @mplitude may be written in the form
tical potential and the correction to the corresponding real
part (polarization term due to transfer channels in reactions al =1-— iE detv [r(t)]e o+
involving exotic nuclei. The effect of the transfer channels aa hes ) . @y
will be included by using the semiclassical model of R&f.
This proved to be quite successful for stable nufgi For « f‘ dt’'v [r(t/)]eiwyt’ 3)
exotic nuclei the Fermi level is close tor even immersed —w re '
in) the continuum and therefore we have to extend that semi-
classical approach to incorporate transitions also to the conwhereV,,., specifies the form factor that couples the entrance
tinuum. In Sec. Il we will briefly summarize the most impor- channele (E,=0) with the intermediate channel at an
tant results of Refs[1—3], in Sec. Il we will discuss the energyEy:hwy_ The integration over time is carried out
transitions to the continuum, and in Sec. IV numerical appli-along the classical trajectory corresponding to the impact
(i‘gltlons Correspondlng to reactions of calcium Isotopes O@aramete[p:”,(' wherek is the asymptotic wave number
“Sn target are presented. in the entrance channel, i.e., with standard notation
=(2uE/%?)Y2,
In the optical model approximation the effect of the cou-
pling is taken into account by modifying the potentiaby

In this section we will briefly summarize the formalism of an amountAU such that the phase shi, calculated with
Refs.[1-3]. For convenience of presentation we will only the new potential, satisfy the relation

Il. SEMICLASSICAL THEORY FOR ABSORPTION
AND POLARIZATION
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e2Bi=g2iBig (4  form factor given above in spherical waves carrying angular
“ momentum\. The contribution to the optical potential be-

In the spirit of the semiclassical approximation one can writecomes

~ . i [+ a,(a,a
2B = g2iB 1__f dtAU (5) AU(N)= >, ”(—1..2)(2j1+1)
) -w ajap A 167 r |
and thus, from a simple comparison between the above rela- XU%(ay,l A v2(ag, 1) F32(r)|2(—1)
tions, one obtains _
_ X[o\(Q)+ipy(Q)]. 11
+ oo | + o0 )
j dtAU=— gz J dtV,,[r(t)]e ' Notice that\ in this expansion is the transfer angular mo-
— % y — o0

mentum. The functiorf, indicates the radial form factor of

t o, multipolarity A, u andv are the occupation numbers of the
XJ dt'V,,[r(t)]e' " (6)  orbitals involved in the transition araj,~1.2 fm is the de-

o caying length of the radial form factor. The sum has to be
As it stands, this equation defines for each partial wave e_xtended to all single particle states belonging to the proj_ec-
value that should have the integral &t but not the func- Uil and to the target that can be populated in the reaction.
tion AU(r) itself. In order to evaluate this we exploit the fact Their contribution is weighted by the quantityi[g,(Q)
that in the surface region the form factors are of the form™ IPA(Q)] that corresponds to the integriglw) introduced
V,,(r)~e "2 and that the main contribution to the integral above, but generalized to account also for the transfer angu-
is coming from distances close to the classical turning poinf2r momentumi. Details about this can be found in Refs.

ro. Using for the trajectory its parabolic approximation ~ [1.3]. Here we would like to point out that in this formalism
the contribution from multinucleon transfer channels is in-

1., cluded insofar as the transfer proceeds via a successive
r=ro+ 5rot%, (7) " mechanism. The contribution of pair correlatigtansfer of
correlated pairsis not included in the formalism. However

wherer, is the radial acceleration at the distance of closesPairing correlations are mostly felt by the ground state and

approach, one getéor more details see Reffl,3)) nearby levels, and the corresponding transitions are in gen-
eral hindered byQ-value effects.
i Fo In a similar fashion one can evaluate the contributibh
AU=—%2 |Va7(r)|2 —(w,), (8) corresponding to pick-up reaction channels. The potential
Y may AU is obtained by adding the contribution coming from all

the proton and neutron stripping and pick-up reactions.

too p( o , ) lll. THE CONTINUUM
I (w =J dtexp — —t—iw,t -
(@) —w 2a, v Close to the drip lines of protons and neutrons the energy

. of the last occupied orbit may be very close to the continuum
v Mo ,»,. ., threshold. As an illustrative example, we show in Fig. 1 the
X wadt exp ~ gt tlot ©) neutron and proton single particle energies in calcium iso-
topes. The lightest of these isotopes lies on the proton drip
is the function that weights the contribution of the differentline while the heaviest one is a neutron drip-line nucleus.
reaction channels to the imaginary and polarization parts ofhe displayed single particle energies have being calculated
the optical potential. by using the parametrizatidd] of the shell model potential,
One-particle transfer channels are dominant to build up.e.,
the imaginary part of the optical potential in the surface re-

where

Y

2
gion [2]. In the case of stripping reactiors+A—b+B, _ _ Ae1dv(r) - v
wherea=b+1 andB=A+1, the form factor requires the Ven(N)=V(r)—A 5+ —g—(s:1) (12
evaluation of integrals of the form
with
fazal(r):f d%r 1a0%2(r1a)* U1a(r1a) 624 1p), (10) —Vq
V(r)= (13

1+exd(r—R)/al’

where ¢?1 and ¢?2 are the single particle wave functions in

the projectile and target, respectively, adda(r;s) is the  where the radius is given bR=r,AY3 N\ =#/Mc is the

shell model potential binding the transferred nucleon to theeduced Compton wavelength, aml the reduced mass of

nucleusA. The labela; indicates the quantum numbers the nucleons moving around thé&{ 1) core. The strength

(nq,l1,j1,m;) in the projectilea while a, indicates the lev- of the volume term is given by

els of the targetlikeB. N_7
Up to this point we have not included any angular mo- _ _ -

V0—49.6(1 O.86m

. . . . 14
mentum in the formalism. This can be done expanding the (14
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FIG. 1. Neutron(bottom and proton(top)
single particle levels around the Fermi surface for
calcium isotopes. The Woods-Saxon potential is
also shown. The dark gray region indicates the
occupied single-particle orbits, while the light
gray indicates the region of bound states.

V,(r) (MeV)

r (fm) r (fm) r (fm) r (fm)

for neutrons and by
fazal(Ezar):f a3 1a¢%2(E,r1a)* ULa(r 12) 624 1),

(16)

Vo=49.6 1+0. 6N—_ 1
0 96( 0.8 +Z) (19 where ¢?2(E,,r1,) is the properly normalized scattering
wave function at the bombarding enerBy [9].
Expanding the form factof16) in spherical harmonics

sl
for protons. The other parameters arg=1.347 M, r5  4ne ghtains for the contribution to the optical model the ex-
=1.31 fm, a=0.7 fm, and\ =35 for neutrons while for pression

protons it isry=1.275 fm,r8'=1.32 fm,a=0.7 fm, and
A =36. Of course for protons one has to add the correspond-

ing Coulomb term. AUcon(r)= 2 (2]1+ Dv*(ag,la)
As mentioned above, one can see from Fig. 1 that nuclei
on the drip lines are likely to be excited by the transfer re- ay(ag,a,) apay
action onto continuum states. This feature has to be incorpo- f 1677 | |f (Ez.r)
rated into the formalism. 0
The inclusion of the continuum in quantum processes is a X (—=)[g9y(Q)+ip,(Q)] (17)

very difficult undertaking which has been attacked by using a

variety of approachetsee Refs[5—8]). Within any of these To obtain this equation we assumed that also in this case the
methods the continuum is replaced by a set of discrete statefarm factor has an exponential decaying behavior. This is
The form factor corresponding to transitions into the con-indeed the case, as can be seen in Fig. 2 where some repre-
tinuum can then be written as sentative examples are shown.

10‘ ; T T T E| ; T T T § ; T T T ? ; T T T §
(2t,, B,=5.0) 1 [ (1g;s E,=8.0) ] | (1h;,/, E,=7.0) ]

FIG. 2. One-particle transfer form factors in-
volving transitions to the continuum. In the top
row are shown the form factors for neutron
pick-up reactions corresponding to the transitions
from the state 85, at —8.5 MeV in '?/Sn to the
indicated states in the continuum #iCa. In the
bottom row are shown the form factors for proton
stripping corresponding to the transitions from
the state i/, in %Ca at—0.5 MeV to the indi-
cated continuum states #3%Sn. The labels of the
different curves indicate the corresponding
transfer.

()|

I£(r)l
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TABLE I. Resonance states for protons3tCa and?/Sn. The
label n in the single particle staten(j) indicates the number of
nodes of the wave function in the inner region of the potential.

36Ca 1245y, ’%

Er (MeV) T (MeV) Er (MeV) T (MeV) 2

1f,, 2819 0.0025 2, 11017 5.86%10° % 5‘

2psp  3.827 0.4857 l;, 3.4836 2.31%10°8 o

2py,  5.089 1.5544 By, 3.4999 8.87x10 ¢ >
2ds,  7.709 4.9022 by, 3.6083 1.71%10°7
1fg,  9.894 1.1741 85, 5.4078 4.57K10°2

lwér)

The implementation of Eq(17) is very demanding if A
- —- r

there are narrow resonances, as indeed often occurs in she
model potentials. In such a case it becomes difficult to know
a priori the stepAE, to perform the energy integral, since at %
the position of the resonance the scattering wave functior2
increases enormously in a very small energy interval. =
The presence of narrow resonances is a common propert,
of shell model potentials both for stable and drip-lines nu- -
clei. As an example we show in Table | resonances corre-
sponding to differentl(j) values that we evaluated for the
nuclei *%Ca and*?Sn using the codesTAR[10]. For some
of these resonances the width is very small and to performr
the integration over the energy within a reasonable accurac)
one has to use such a small step of integration that the cal

culation becomes too lengthy. It is thus important to find
gty P FIG. 4. Absorption(full line) and polarization potentialdash

another strategy to carry out that integration. line) for the reaction of the indicated Calcium isotopes GfSn
In order nalyze this problem we fir h n- :
order to analyze this problem we first study the depe he shaded area is the real potential. Notice that*f@xa the po-

dence of the total cross section to populate states in the cor- .~ ~. _ X )
tinuum as a function of their energwhich we callE,). This arization potential becomes repulsive at large distances.
is easily done in first order perturbation theory by applying
the formalism presented above. Here we only recall that th@opulate this state by varying the enegyaround the value
cross section is proportional to the integral of the form factor3.866 MeV. The resulting cross section as a functiok pfs
along the classical trajectory modulus square. As an exampghown on the left hand side of Fig. 3. The stars on this figure
we consider a proton stripping reaction in the collision ofindicate the calculated values while the continuous line is a
20Nie on 2%8Pp at a bombarding energy close to the CoulombBreit-Wigner distribution corresponding to the energy and
barrier. Using the Woods-Saxon parameter of Réf.we  Wwidth of the resonance.

found in 2°Pb a narrow proton resonance corresponding to We performed the same calculation for the resonance
the statej;s, at an energy of 3.866 MeV and a width of hg;, which is much wider than the previous one. The results

0.001 MeV. We then calculated the total cross section t@re shown on the right-hand side of Fig. 3. Even in this case
the energy dependence of the cross section is well described

by a Breit-Wigner distribution with parameters correspond-
ing to the complex energy of the resonance.

60C a

255 10 15 20 25
r (fm)

10 15 20

r (fm)

10

T 20 T T T T

T
=7 j=15/2 =5 j=9/2

) 4
2 15 From these plots one sees that for a given resonance
G °r 1 1 =(lj) the cross section can be parametrized according to the
a— . expression
% 2 5
B L _
FZ
3.85 3.88 267 268 '3 55 4 45 5 55 o(E,)= . — o(E,) (18
- _ 2 2 a)s
E, (MeV) E, (MeV) 4(Ex—Ea)+1;

FIG. 3. Total cross section as a function of the energy corre- L .
sponding to the transfer of a proton #iNe to the statel(j) lying where we have indicated with, the real part of the energy

in the continuum part of the spectrum #¥Pb. The values ofl(j) ~ ©Of the resonancd,’, its width ando(E,) is the value of the

are indicated in the figure. For the state with the larger widght ~ Cross section at the resonance. This is an important feature
parh the cross section has been multiplied by a factdt The full  Since it will allow us to evaluate the imaginary and polariza-
line is a Breit-Wigner distribution with parameters corresponding totion potentials considering only bound states and resonances,
the complex energy of the resonandg ). The stars are the calcu- Without performing the energy integral. Indeed, by defining
lated values. the form factor of a resonance as



1538 POLLAROLO, FERREIRA, LIOTTA, AND MAGLIONE PRC 59

1F < E eoca 4
107tk {1 i
= 1072 4 F .
(3
a2 b FIG. 5. Total absorptior(full line) and the
C U 1 F 3 corresponding contribution from bound states
. i only (dash ling for the reaction ont?sn.
107 | 4 L ]
10751 {1 r J
10—6““|‘ P U ISR N [T B | P R
10 15 20 25 30 5 10 15 20 25 30
r (fm) r (fm)
7L, node and therefore beyond that point this potential reduces
faja,(Ea:1) =\ 5 Taja,(Eail), (190  the attractive part of the optical potential. But this effect,

which as seen in the figure is small, may strongly depend
upon the parameters of the shell model potential that define
the position of the single particle bound and resonance states.
This feature usually does not appear in stable nuclei, neither
in the other calcium isotopes of the figure. That is, only in
36Ca the shape of the bare nucleus-nucleus interaction may
be affected by the polarization.
IV. RESULTS AND CONCLUSIONS As was pointed out above, the influence of the continuum
Sj . . . I . should be relevant only for nuclei close to the drip line, since
ince in drip-line nuclei excitations to states in the con-; . o : .

in stable nuclei the contribution of the continuum is strongly

tinuum can readily occur, one may expect that in these nUCIes',uppressed by the adiabatic cutoff functig(Q) + ip, (Q)

the parametrization of the optical potential does not follow; : : 4 .
standard prescriptions, i.e., those that have been derived 8} (Iqu.h(ll)]; This featﬁllre |Indeed appdegrsll In-our lcglgruk:atlops
stable nucle[13]. In this section we will examine this ques- and, therefore, we Wlb only preﬁer!t rip-in€ nuciel. | us,lm
tion in detail. For this we will consider reactions involving Fig. 5 a comparison between the imaginary potentials calcu-

stable as well as proton and neutron drip-line nuclei. We will
thus apply Eq(11) and Eqs.(17)—(19) to study the correc- ST T
tion to the optical potential for the collision of stable and I
drip-line calcium isotopes of?‘Sn. To have a meaningful -
comparison in all cases we set the center of mass bombarc B N
ing energy to be 10% over the nominal Coulomb barrier. The
choice of these reactions has been dictated by the fact the
for the stable calcium isotopes there exist experiments
[11,12 that have been analyzed within a generalization of 1°_1;
the semiclassical model used in this paper. .
Including all the neutron and proton bound states in the %
projectile as well as in the target and all the resonances Wi'[fi
energies below 20 MeV we have calculated the imaginary;:; 1072 |
and polarization potentials for the reactions mentioned '
above. The calculated imaginary part of the potentiall
line) is shown in Fig. 4 in comparison with the real part of

where the factorrI',/2 is the integral of the Breit-Wigner
distribution in Eq.(18) over the energy, we can calculate the
polarization potential by using E11) but now the sum has
to be extended also to the resonance states.

the empirical optical potentidbhaded areaaken from Ref. 107 ' . ]
[13]. S Yoa(BeteTMeY) )

An important feature to be noticed in this figure is that for T g EE"igi W l" )
drip-line nuclei the imaginary part of the potential is at least LT T eog (gt;mz MeV) '

as large as the corresponding real part. In stable nuclei, in
stead, the real part is larger than the imaginary one by & i
factor of about 5. This indicates that in drip-line nuclei the 50 % 100 1z 150
scattering is dominated by absorption and, therefore, one
may need to use coupled channels techniques to analyze
grazing reactions in those nuclei. FIG. 6. Elastic angular distributiofratio to Rutherforg for the

It is also worthwhile to notice that in the case §Ca the  collision of calcium isotopes of2%Sn at the indicated bombarding
polarization potentialdotted ling has at large distances a energy.

1074 \

8 (degree)
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2 [ a=0.7 fm | 2 [ a=0.7 fm |
v ---- a=13 fm } 10 ¥ ---- a=13fm }
10! 10t |
s ¥ 5 'F
CEN 2 FIG. 7. Total absorptioW and polarization
- 10 = 10°F AV potentials for the case ¢fCa corresponding
02k < o2l to different values of the diffusivity of the shell
E model potential as discussed in the text.
1072k 102k
Tl Tl
5 5
r (fm) r (fm)

lated by including only bound statédashed lingand bound the effect of these changes on our potentials, we repeated our
states plus the resonandésl line) is presented fof®Ca and  calculation for the nucleu$Ca by usinga=1.3 fm and
0ca. As one can see, at this low bombarding energy, onlylecreasing/, by 10%. As seen in Fig. 7 the corresponding
for the proton drip-line nuclei the continuum plays a role changes in the absorption and polarization potentials are not
while it is unimportant in all the other cases. fiCa the  very important. The corresponding elastic cross sections are
continuum actually is very important at large distances, buhot affected.
this region does not influence the shape of the elastic angular In conclusion, in this paper we have generalized the for-
distribution. malism of Refs[1,3] to incorporate the contribution of the
In Fig. 6 we show the elastic angular distribution providedcontinuum. This allows us to calculate the absorptive and
by these potentials. One sees that the relatively strong imagpolarization potentials even for system at the limit of the
nary part of the potential corresponding¥Ca and®Ca, as  B-stability valley. For collisions with nuclei close to the neu-
discussed above, is reflected in the modifications of the crogson and proton drip lines the optical potential is dominated
section at forward angles. by the absorption and the polarization potential may be re-
Finally, one may expect that in nuclei close to the neutrorpulsive. This finding may indicate that for exotic nuclei
drip line the corresponding density presents a long tail formcoupled-channel calculations may be needed even to de-
ing a “neutron skin.” This feature was analyzed in some scribe transfer processes.
detail in Ref.[14] within the framework of a mean field
approach. It was found there that going from stable nuclei to ACKNOWLEDGMENT
the ones on the neutron drip line there is a variation in the
diffusivity a by a factor of as much as 2. At the same time This work has been supported by the r&o Gustaffson
the depthV, of the potential diminishes by10%. To see Foundation.

[1] R.A. Broglia, G. Pollarolo, and A. Winther, Nucl. Phys361, (Springer-Verlag, New York, 1982p. 180.
301 (1981. [10] E. Maglione, Computer codesTAR (unpublishedl

[2] G. Pallarolo, R.A. Broglia, and A. Winther, Nucl. Phy&s406, [11] L. Corradi, J.H. He, D. Ackermann, A.M. Stefanini, A. Pisent,
369 (1983. S. Beghini, G. Montagnoli, F. Scarlassara, G.F. Segato, G.

[3] C.H. Dasso, S. Landowne, G. Pollarolo, and A. Winther, Nucl. Pollarolo, C.H. Dasso, and A. Winther, Phys. Rev54 201
Phys.A459, 134 (1986. (1996.

[4] S. Cwiok, J. Dudek, W. Nazarewicz, J. Skalski, and T. Werner,12] | Corradi, A.M. Stefanini, J.H. He, S. Beghini, G. Montag-
Comput. Phys. Commur6, 379 (1987. noli, F. Scarlassara, G.F. Segato, G. Pollarolo, and C.H. Dasso,

[5] T. Berggren, Nucl. PhysA109, 265 (1968. Phys. Rev. C56, 938 (1997).

[6] C. Mahaux and H. A. Weidennlier, Shell Model Approach to
Nuclear ReactiongNorth-Holland, Amsterdam, 1969

[7] A. Bonaccorso and D. N. Brink, Phys. Rev4@, 1559(1991).

[8] R. J. Liotta, E. Maglione, N. Sandulescu, and T. Vertse, Phys
Lett. B 367, 1 (1996.

[9] R. G. Newton, Scattering Theory of Waves and Particles

[13] O. Akyuz and A. Winther, inProoceedings of Enrico Fermi
International School of Physics 1978dited by R.A. Broglia,
C.H. Dasso, and R. Ric¢North Holland, Amsterdam, 1981

[14] J. Dobaczewski, W. Nazarewicz, T.R. Werner, J.F. Berger,
C.R. Chinn, and J. DechargBhys. Rev. (563, 2809(1996.



