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Fusion excitation functions and barrier distributions: A semiclassical approach
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Fusion cross sections and barrier distributions are discussed and calculated in the framework of a semiclas-
sical approximation for a variety of systems. An overall good description of the data is achieved.
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[. INTRODUCTION [5—10]. All these calculations have been able to describe
quite well the excitation function while they had several
In a collision between two ions the process that bringsproblems in the description of the barrier distributions.
them to form a single composite system is called fusion. The In this contribution we will describe fusion excitation
simplest description of this process considers the two ions déinctions and barrier distributions using the semiclassical
rigid spherical objects that interact via a repulsive, Coulompbmodel developed in Ref$11,12 where the coupling to the
plus an attractive, nuclear, potentials depending only on thé&W-lying surface modes and the transfer of nucleamesu-
relative center-of-mass distance. Fusion is, in this model, delfons and protonsare taken explicitly into account in a semi-
scribed as the ability of the system to penetrate the potentigllassical approximation. The same model has been success-
energy barrier. A systematic study of fusion data with thisfully applied to the study of multinucleon transfer reactions
model can be found in Ref1]. and to the description of the transition between the quasielas-
However, many experiments have shown that the barriefic reactions and the more complicated deep-inelastic colli-
penetration model is inadequate for the description of théions. The paper after a detailed summary of the theoretical
observed cross sections, at energies below the Coulomb baoncepts(Sec. 1) applies the obtained results to calculate
rier the model underpredicts, of several orders of magnitudéPSion excitation functions and barrier distributions for sev-
the observed value§2]. These discrepancies have been€ral combinations of targets and projectil&ec. Il)).
readily attributed to the effect of coupling of the relative
motion to the internal degrees of freedom of the two collid- Il. THE THEORY

ing ions. The factors that have been identified as playing a F h dv of h . . h | d
major role in the enhancement of the sub-barrier fusion are ~OM the study of heavy-ion reactions we have learne

permanent nuclear deformation, coupling to the Iow—Iyingth_at the transition fro_m the_ grazing regime to the more com-
nuclear excited states, and, possibly, particle trar(gigvar- plicated _deep-_melastlc regime may be described quite well in
ticular neutrons In a simple approximation, where one ne- the semiclassical approximation in term of the well known

glects the excitation energy of the reaction channels, one Cafﬁrm facto'rs for smgle—n'ucle.on transfer and the exmta’gon of

interpret the effect of the couplings as giving rise to a distri-tne low-lying su_rfac_e w_bra‘upns. _In term of these building

bution of barriers which drastically alters the fusion prob-PI0Cks the Hamiltonian is written in the form

ability from its value calculated with a single barri&.
Following this idea a method was proposel for ex-

tracting the barrier distribution from accurate measurements here for th il it

of the fusion excitation functiow(E) by taking the second Where for the projectiléa) we can write

derivative with respect to the center-of-mass endjigy of

the quantityEa(E). While the fusion excitation function is Ha=2> ealaj+ > fho,al,a,,. )

almost featureless, the barrier distributions display a very i A

sensitive pattern as a function of the different colliding part- , i , i o

ners so that the effects of the couplings are shown explicitly! "€ first Sim defines the single particle Hamiltonian, the

operatorsa'’(a) are the fermion operators that creaéani-

From a theoretical point of view, the standard way to ! X . X .
address the influence of the coupling between the relativBilate) @ particle on the single-particle level with energy

motion and the intrinsic degrees of freedom is through thénd quantum number=(nljm), while the second sum de-
use of the coupled-channels formalism. This implies thaf'?es the Hamiltonian for the excitation of the surfac_e_mode,
very large numerical calculations should be done in order té.(2,,) are the boson operators for the creatiannihila-
describe the low-energy fusion data. These calculations, ovéion) of a phonon of multipolarityx . and energyiw, . A

the years, have been done with several degrees of sophisimilar expression holds for the Hamiltonian of the target
cation including couplings to static deformation, to vibra- System #). i

tional states and, to some degree, also to transfer channels The interactionV;,(t) has three terms

H=Ha+Ha+ VD), (1)
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v t(t)=\7t () 4V, (H)+AU AD. 3) whereT,(E) is the transmission probability through the po-
" ' " a tential barrier of partial wavé At energies above the Cou-
The first, responsible for transfer, is written in the form  lomb barrier it is convenient to rewrite EGLO) in the sharp

cutoff model where one assumes tfigt=1 for all partial
v 2 faka-’( )a’ , waves I_eading to a distance pf closest approach smaller_than
L TR r(t)a’(ada(a;) a certain value, beyond which the two ions fuse. In this
approximation one obtains

*, > A (t)al(apala), 4)

var)j,K O'(E):Wrg(l_

UaA(rc)) (11)

E
where 33 and f%3 are the single particle stripping and
pick-up form factors. The sum has to be extended over a
single particle levels a(k,aj’) of neutrons ¢) and protons

(7r) of target and projectile. For the inelastic proces@s
citation of surface vibrationswe write

t energies close to or below the Coulomb barrier, the above

pproximation has to be modified by including the penetra-
tion probability through the barrier. Using the inverse para-
bolic approximation the transmission coefficient becomes

1
l+exg2@(Ep—E)/hwy]’

T\(E)= (12

Vin=§ . (0lal,(A) +a,,(A)]

whereE, is the barrier of the effective potential amg, the

+> fa (r)[a{ (a)+ay,(a)] (5) frequency in the relative motion
iR © J
1 U
wheref}, andf}, are the nuclear plus Coulomb form fac- o=\ &rzeﬁ- (13

tors for the excitation of the surface modes in the target and

:Rtghzg)crgten?"tﬁéTgiclii‘isé;Eng g‘; ttmi'gtﬁéigsgm g/'?etr?':?:f for The fusion cross section calculated with this transmission
P coefficient constitutes the no-coupling limit and, as men-

the radial mation. The most important m0d|f|cat|0ns are duetioned in the Introduction, underestimates considerably the
to proton transfer, that alters the Coulomb potential, and theolctual fusion cross section data

transfer of angular momentum due to the surface vibrations, For the capture distange one usually uses the Coulomb

that alters the centrifugal terfsee below barrier radiusrg, but simple classical calculations demon-

The time dependence Qf the Interaction s Obta”.‘ed* n th%trate(see Refs[14,15]) that at short distances the reaction is
semiclassical approximation, by solving the classical equaz

tion of motion in a nuclear pius Coulomb field. For the strongly influenced by considering the deformation degrees

nuclear potentiall ., we use the simple parametrizatig] of freedomea. These surface degrees of freedom may indeed
P an piep give rise to instabilitieq(i.e., capturg for trajectories well

outside the Coulomb batrrier, i.e., for trajectories withlan

R.Ra 1 ) : ;
] (6)  value greater than thlegrazing. In order to give an estima-
RatRa 1+exp(r—Ra—Ra)/a] tion of the capture angular momentuip and the capture

whose parameters come from the knowledge of the nucle cﬂstancerc we have to study the problem of the merging of
i__‘e two nuclear surfaces, in other words we must know if at

U,a=—167ya

densities and have been slightly adjusted through a syste Y e turning point the surface distange r — R. — R. will in-
atic comparison of elastic scattering data. They are given b 9p ; a A .
rease or decrease. From the classical equations of motion, at

1 the turning point we can write
= =1.171+0.53A; "+ A 3] fm 1, (7)
a 2 2
. I VAVAN:: AU a
s MapS= 3 > —(1+9) pr (14
Ri=1.2A;"-0.09 fm, (8) Maal r
N.—Z)(Na—7Z with
y=0.95<1—1.8( 2 ;)(A ATZN ) ey fm=2, (9)
A 2\, t1 m m,
5= | (R +(R)2——|, (15
where A, Z;, and N; are the mass, charge, and neutron oo AT Dx(n) Dy(n)
numbers of nucleus The Coulomb potential is taken to be
of the usual point charge form. D, (n) being the mass parameters of the surface modes of
Neglecting the coupling terms, at a given center-of-mas$arget and projectile.
energyE, the fusion cross section is written as If s<0, large deformation will occur and the system will
5 merge to form a compound. The boundary of grazing reac-
U(E):2 wh (21 +1)T,(E) (10) tions may thus be calculated from the condition thatO.
T 2mypE ’ This leads to the equations
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12 Z7,7,€ IU op < A e f(?
T -1+ e) = =0, (16) P(E)—% i€ Y Et 5 —Nhw|, (24
maArc rc ¢
whereN is an integer defining the number of phonons. The
12 Z.Zp€° distribution has an average energy
5+ = +Ua(ro)=E (17
2Maal ¢ c 1d f(t)?

(E)=7 gz Z(B)|  =holnt)*~ 57 29
that allow the determination df, andr.. In actual cases B=0
these quantities are not calculated from the above simplgmd a standard deviation

estimation but by solving explicitly the classical equations of

motion as in Ref[15]. 1 d2
In the presence of couplings, the energy of relative motion UE:3 —InZ(p) =(hw)?| p(t)]> (26)
is not well defined, an exchange of energy from the relative icdp

motion to the intrinsic degrees of freedom takes place, and pee

thus the above formulas for the fusion cross section have tb is interesting to notice that the energy distribution given by
be modified to incorporate this effect. To illustrate theseEd.(24) does not start from zero but is shifted by an amount
modifications we will follow the work of Ref§11,17. Here AE

we will only outline the main results referring to the above F(1)2

papers for details. To this purpose it is convenient to simplify AE= (27)
the above Hamiltonian and consider only head-on collisions fiw

and a single surface mode in the target. The Hamiltonian | . . o

becomes which corresponds to the adiabatic polarization term.

The results obtained from the simple model indicate that

P + + the effect of the coupling may be taken into account by im-
H=hoa'ati(t)(a'+a) (18) plying that the two ions move along a trajectory in the field:
with UN(r)=Uaa(r)+(E), (28
B [ho  dUga with (E) the average energy loss given by Eg5). This
f()=- 2C A o (19 means that at distance of closest approach the projectile

meets a distribution of barriers with probabilities given by
It is convenient to express the solution of the problem inEq.(24), the actual transmission coefficient is thus calculated
term of the characteristic function defined by the matrix el-by folding the transmission coefficient of E(L2) with the
ement barrier distribution probability of Eq24). This result is very
similar to the one obtained in Ref%,6,8,9; for more details
Z(B)=(¥ (D" AW (1), (20 ~ see Refl12]. .
The role played by the angular momentum may be easily
| (t)) being the state vector of the system. The probability/cluded in this semiclassical formalism, since for the pen-
to have, at time, an energy los& may be calculated via the etrability of the barrier it is important to estimate the shift

Fourier transform of this function and the fluctuations of the radial component of the relative
motion energy. In presence of angular momentum the Hamil-
1 (4o tonian of Eq.(18) becomes
P(E)zzf e 'AEZ(B)dB. (21

A= {ho\ala,+f,,(Da'+f (Da}, (29
As is well known the system represented by EiB) can be :

solved exaCtly; its characteristic function has the form where the sum runs over all thﬁcomponents of the angu|ar
momentum\ and the form factors are expressed in the form

InZ(B)=|n(t)[*(e"F—1)—i lf(mzﬁ (22)
hrow £ (0= — A ren Maall) o s (1 (I)(t)) (30)
M 2C, ar Ahw|2™ ’
with
C, being the restoring force parameter. Indicating widgmd
o f(t) . L the intrinsic angular momentum and the orbital angular
7)== ﬂcf(t')emt dt’+ %elwt- (23 momentum, respectively, we may write the radial energy in
the form
The function of Eq.(22) is the characteristic function of a (L—1)2—L2
Poisson distribution, thus the probability that the energy dis- E=H(t)— ——. (31)
sipated from the relative motion has a given val(g) is 2myar?
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This, in good approximation, may be rewritten as where e and m are the energy and the magnetic quantum
number identifying the single-particle state. Wi@, we
E=AM-> audt)a’a,, 32 have indicated the optimur® \_/alue for the transition. For
r=HO % nbt)a,a, (32 the case of neutron transfer it may be assumed to be zero

) while for the case of proton stripping has the expression
where®d(t) is the angular velocity. From the above expres-

sion one can immediately deduce that the effect of the angu- (Z,—Zp) €7
lar momentum can be included by using the old results but Qo=—"7— (39)
with the substitution 0

w—[w—pud(t)]. (33 In the above expressions witly and®, we have indicated
the radial acceleration and the angular velocity at the dis-
It is clear that the transfer of angular momentum starts to beéance of closest approach for the given trajectory.
important at energy very close or above the Coulomb barrier |n the estimation of the barrier penetration we will not
where it will strongly influence the shape of the barrier dis-include the contribution of particle transfer channels to the
tribution. average energy loss but only their contribution to the energy
In order to include the transfer channels in the barrierspread. This is because the estimationBf, through the
penetration problem we will follow Ref.11] where a con-  sum over all single particle states, is diverging and its value
sistent description of particle transfer and dissipation of enwill strongly depend on the assumed energy cutoff for the
ergy in heavy ion reactions has been obtained by treating théingle particle form factor to vanish. We remind that the
transfer channels as mutually independent and also indepeRuclear potential of Eq(6) has been obtained via a best-fit
dent on the excitation of the collective surface modes. Hergrocedure over elastic scattering data and part of the polar-
we will use the result that the transfer probability is quiteization is automatically included. We observe also that this
small and that the large dissipated energy and large mass ap@|arization term is proportional to the square of the single-

charge drift are due to the very large number of transfeparticle form factors and thus has a shape that is very similar
channels. From the hypothesis of independence we can info the potential itself.

mediately conclude that the characteristic function describ- For the spread in energy we obtain
ing the properties of these reactions may be written as
1 d? .
vSy2__ T vS — ki’ 2 . 2
z.8)=11 z2(8); @y (BT EnEe . 2, [ (ro)s(ia)I”
5 -
(39

here the product has to be taken over all neutron stripping
(vS), neutron pick-up ¢P), proton stripping &S), and pro-  In the evaluation of the above expression we replace the sum
ton pick-up (wP) channels. For the case of neutron strippingover the discrete levels of projectile and target with an inte-

one getd12] gral over a continuous distribution and we replace the single
S T i’ 2 2 0.3 T T T T
InZi3(B) =2 | —— " (ro)| ||s(&ir)
tr B <~ Zﬁfkif ( 0 | (fkl | B = 96 Mev
— —-E = 98 MeV
. h —.—.- E = 100 MeV
X (el (Phér IT)B— 1) —j 21 & gl, ®% | E = 104 MeV
TV

0.2 -

where the sum has to be extended over all the single particle
states of projectilei() and target K). This expression has &
been obtained by using for the single-particle transfer form

factor an exponential shagé'' (r)=e*+("~Ro) wherex, de-
fines the range of the form factor that is almost twice the one 01
for inelastic processes. The functisfé,;.) weights the con-
tribution of the different transfer channe{see Ref[12]).
The collision time and the adiabaticity parameters are here
defined by

00y 1907,

1 0—10 -‘/—5 0 5 10
T,= (36) A E (MeV)
erO

FIG. 1. Theoretical barrier distributions for tH€Ca+ °°Zr sys-
tem for the indicated center-of-mass bombarding energies. Notice
Ty : that the shape of the barrier distribution changes very little for en-
v=—[(&—€)—h(m,—m)DPy+ , 3 p 9 y
i 2h [(ei W= A, ) Pot Qo] 37) ergies below the Coulomb barrier.
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FIG. 2. In the bottom row, for the indicated systems, are shown the calculated excitation functions in comparison with the experimental
data. For the case oS+ %Zr we show also(dotted ling the uncoupled results. In the top row the calculated barrier distributions are
compared with the experimental ones. The theoretical curves have been obtained for an energy below the Coulomb barrier.

particle form factors with the average as discussed in RefwhereG is a Gaussian distribution with standard deviation
[16]. For the single particle neutron level density we use thegiven by Eq.(41) and
expression

. f)%n(ro)
: Eng=2 | 2 No(hoq—pudo)— ———|. (43
(40) "o |k hw,—udg

v 1 e—Vao m* €r—Vao
g.(€;m)=gdg X

27Tbv G_VAO € 727b1/ G_VAO

where wither we have indicated the Fermi energy, withy  |n the above expressions the indexruns over all the surface
the depth of the shell model potential and withthe mag-  modes included in the calculation and we have indicated
netic quantum number. The paramelgris related to the with {N,} the set of integers defining the occupation num-
mean values ofn” and may be expressed as a function of thepers of the surface modes. The fusion cross section may be
rigid moment of inertia andy, is the neutron level density at thus calculated from Eq10) where the transmission coeffi-
the Fermi surface. For more details see R&2]. cient is defined by

Since the different transfer modes are considered to be
independent the total width of the distribution due to particle

transfer is given by T|(E)=f

+ oo

) P(E,)T,(E—-E,)dE,. (44

oG (EN=2 [0(E)]? (4D
7 Before proceeding to the applications of the above formalism

h the ind has b defined ab | lusion th to the calculation of fusion data a last consideration about the
where the indexy has been aetined above. In Conclusion €y qginiion in Eq.(12) of the transmission coefficient. The fact

probability to have a given valug, of energy loss in radial ¢ the surfaces are not static but can vibrate will influence
energy may be written in the form the penetrability of the barrier. As discussed in R&2] this
PR effect may be incorporated by modifying the mass parameter
P(E,)= >, (H 77”ennz> G(E,~Epny), (42) by substituting Ith,, with (1+ 8)/m,, whered is given by
N\ Ny! n Eq. (15).
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TABLE |. Energy and strength of the low lying"2and 3~
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freedom play a minor role and contribute, also, to smooth-

states included in the calculations. The values are taken from Refgut the barrier distribution at higher energies.

[18,19. In the following in comparing our barrier distributions
with the experimental ones, extracted from the excitation
Ea+ BE2 Es- BE3 functions, we will shift and scale the “experimental data” to
Nucleus  (MeV) (e’ b?) (MeV) (e’b?) superimpose on our calculated curves and we will show the
120 4.439 416103 9.641 6.10¢10-* barrier di;tribution calqulated _at an energy below the Cou-
160 6.917 40K10°2 6.130 150102 lomb barrier. The (elatlve motion and the nuclear form fac—
s2g 2 230 300010 2 5006 105102 ftors for the excitation of the surface .modes are determined,
365 3.991 0.65 102 4.200 2 00K 10-2 in our model, by the nuclear potential of E®) that has
40cq 3.004 0.68 103 3737 0K 10-2 been determined by a best fit procedure of elastic scattering
. 3'832 8'4& 10-3 4'507 8'30< 10- data on several tgrget and prOJ_ectlle combmathns. In ordgr
o 1 '454 5 '95< 102 4'475 1'70< 102 to have a petter fit to the expenmentgl data we mtrqdqce, in
oo 1'332 9'33( 102 4'040 2'08< 102 our formalism, two parameters. The first cm_ét is a shift in
iy : : , : : - the nuclear potential radiysee Eq.(6)], while the second
QOZr 2186 6.30c10° 2750 - LO&I0" " ones; is a scaling of the correctiod to the reduced mass
116Zr 1.750 55K 10_1 1.897  1.8& 10_2 that enters in the calculation of the transmission coefficient
1zzd 2?;3 ?;g 18_1 ggij 32& 18_2 [see Eq(15)]. We thus make the following substitutions:
n . . . .
40ce 1596  29%10' 2470  2.1x107?
144sm 1.660 2.6610°! 1.810 2.7x10! RatRa—RatRa+AR (49
1%45m 0.082 4.36 1.013 1.0010°?
199pt 0.328 1.66 1.433 1.310°! and
198py 0.407 1.06
208ppy 4085 298101 2615 6.1k10°‘ 0—856. (46)

IIl. COMPARISON WITH THE DATA

We remember that E¢15) gives an estimation of only for
the nuclear interaction, in actual cases one should also con-

In this section we will apply the above formalism, by
using the prograneRAZING [17], to the calculation of fusion
excitation functions for a variety of target and projectile

TABLE II. The values of the parametetsR andsg, for the
indicated reactions, used in the calculations.

combinations focusing on systems where together with the
excitation function also the barrier distribution could be ob-

tained. Let us remind that the fusion cross section is calcu-
lated from Eqgs.(10) and (44). It is thus clear that in our
model, contrary to all other approaches where the barrier
distributions are inferred from the excitation functions, in
order to calculated the fusion cross sections we must first
calculate the barrier distributions. They are energy dependent
and their shapes are determined by the dynamics of the col-
lision and by the properties of the intrinsic degrees of free-
dom of the colliding nuclei. Therefore, before going into the
detail of the comparison with the experimental data, we will
start by discussing the properties of the barrier distributions.
For the %S+ 9Zr system we show in Fig. 1, for the in-
dicated center-of-mass energies, the calculated barrier distri-
butions as a function of the parameteE that measures the
uncertainty in the energy of radial motion due to the excita-
tion of the intrinsic stategthe zero of this scale corresponds
to the center-of-mass ener@y. At energies below the Cou-
lomb barrier(for this system it is at=101 MeV) the barrier
distribution maintains the same shape while at energies
above it becomes smoother and wider. This behavior, as dis-
cussed in the theory section, is governed by the partial wave
distribution of the fusion cross section, in fact at energies
below the Coulomb barrier the averapgalue of the com-
pound nucleus is essentially constant while it increases at
larger energies thus contributing to smooth out the barrier

Reaction AR(fm) Ss Ref.
40cat zr —-0.15 0.1 [29]
40Cat %7y —0.02 0.8 [29]

3654 907y 0.0 0.0 [25]

3654 967y 0.1 0.0 [25]
2C+ 9%t -0.15 0.0 [20]
2C+ 19%p¢ -0.2 0.0 [20]
160+ 445m -0.2 0.0 [21]
160+ %%5m -0.33 0.0 [21]
825+ 110 0.0 0.6 [24]
365+ 110pq 0.2 0.2 [24]
160+ 208pp —0.05 0.0 [22,23
40Cat 1%%5n 0.05 0.9 [31]
365+ 140ce —0.05 0.2 [26]
40Ca+ 199t -0.2 0.5 [30]
40Cat “6Ti 0.0 0.2 [28]
40Cat “°Tj -0.1 0.3 [28]
40Cat 50Tj -0.2 0.8 [28]
46Ti+ ®Ni 0.15 0.5 [32]
48Tj 4 64N 0.05 0.5 [33]
40Cat+ 4°Ca -0.2 0.25 [27]
40Cat+ *.Ca -0.1 0.8 [27]
58N+ 58N -0.1 0.8 [34]
58N+ 54N 0.0 0.8 [34]
64Ni+ 54N 0.03 0.5 [35]

distribution [see EQq.(33)]. The particle transfer degrees of
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FIG. 3. Theoretical barrier distributions for tH8Ca+ °°zr
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sider the Coulomb one that has a counter effect. With these
two parameters we are able to achieve a reasonable overall
description of the data.

In Fig. 2 we display the calculated excitation functions
(bottom and the corresponding barrier distributigiep) for
the “°Cat °9°7r and 36s+ %097y systems in comparison
with the experimental data. In the calculations we have in-
cluded the low-lying 2 and 3~ states of target and projec-
tile as reported in Table | and the potentials have been modi-
fied according to the parameters of Table Il. For the system
365+ 99Zr we report also the uncoupled excitation function.
For these reactions it is interesting to understand the remark-
able difference between the excitation functions of the two
Zirconium isotopes since they have quite similar spectra. In
Ref.[29] this difference has been tentatively ascribed to par-
ticle transfer channels, particularly to neutron transfer. In
Fig. 3 we display for thé®Ca+ °°-9Zr systems the evolution
of the barrier distributions as a function of the target states
included in the calculation. It is clear that the difference in
the barrier distribution has to be ascribed to the strength on
the 3~ state that is stronger in the case %6Er.

In Figs. 4, 5, and 6 we show a systematic comparison of
our calculations with the experimental data both for excita-
tion functions and barrier distributions when they are avail-
able. When the same projectile or target is used for different
targets or projectiles, the corresponding data are displayed in
the same frame to facilitate the comparison. All the calcula-

systems as a function of the states of the target included in thgons have been performed by including the low-lying 2

calculations. The full curve indicates the results when both the 2
and 3~ states have been included, the dashed one when only‘the 2
state is included and the dotted one when only the s3ate is

and 3~ states of projectile and target and including all the
transfer channels as discussed in the previous setsies

included in the calculation. Notice that all distributions are normal- 1 able | for the energy and strength of the inelastic states and

ized to one. Table Il for the parameterAR ands; used. The high-lying
04 T T T T T T T T T 03 T T T T
03 | e TR . Msmi oL 4 Bs |
A .
& o2 -+ - -
0.1 - B
o1l 4L i o - M
0 1 1 ”’0 o 1 1 ot 1 1 * 0 f & +| %M* &
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o[ RC +1e4198py ] 16 | 1441645 ] 19°F s23eg ,110p :
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FIG. 4. Excitation functiongbottom row and barrier distribution&op row) for the indicated systems. Notice that the excitation function
for the 25+ 11%d system has been scaled by an order of magnitude.
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experimental data of Ref§22,23.

states have not been included in our calculations since theihe data of 12C+ 19%pt, 160+ 1445m, 3¢S+ 149Ce, and“°Ca
effect on the barrier distribution is negligible and they ac-+ 1%%pt. For some systems, for instancéS+ “Ce, we
count for an overall normalization of the fusion excitation overestimate the fusion cross section in the high-energy part
functions of a few percent. The overall agreement betweebut, in this region, one should keep in mind that for those
data and theory is quite good especially for the cases of Figsystems, at high energy, the fission channel starts to play an
4 and 5 where together with the fusion excitation functionsimportant role and this channel can account for part of the
also the corresponding barrier distributions were availablemissing fusion cross section. For the cases displayed in the
As a general remark we mention that our theory does nolast figure (Fig. 6) discrepancies are clearly seen for the
predict any bumps at high energy as indeed it is shown byickel on nickel and calcium on calcium reactions but our
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curves are of the same quality as the one of previous analychannels and the inelastic excitation to the low-lying states to
ses, see, for instance, RE36], where the influence of higher the calculation of excitation functions and barrier distribu-
order couplings has been investigated. tions. The systematics over several combinations of target
and projectile demonstrates that the model gives an adequate
description of the processes and stresses the importance of a
IV. CONCLUSIONS proper treatment of the inelastic collective degrees of free-
dom in order to have a correct description of the dynamical
In this paper we have used the semiclassical model oévolution of the nuclear surfaces that dominates the process
Refs.[11,12, that incorporates on the same footing transferin question.
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