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The semi-classical model GRAZING is used to analyze fusion excitation functions and
barrier distributions for several projectile and target combinations. It is shown that the main
contribution to the fusion enhancements is coming from the excitation of collective surface
modes. The behavior of the fusion excitation function at very low energies is shown to be
sensitive to the actual shape of the ion-ion potential at distances shorter than the position
of the Coulomb barrier.

§1. Introduction

This contribution starts with an outline of the semi-classical model that is used
to calculate the probability for two ions to overcome the Coulomb barrier to form
a composite system at a given bombarding energy. If, afterwards, this system will
equilibrate to form a compound nucleus is a question that this model, and all the
others, can not answer. The calculated fusion cross sections will thus overestimate,
at the higher energies, the experimental data deduced from the measurement of
evaporation residue only.

Following the very brief theoretical introduction the contribution will proceed to
discuss applications in actual cases stressing the role played by the different degrees
of freedom in the tunneling process. Finally the behavior of the fusion excitation
function at very low bombarding energies will be discussed.

§2. The semi-classical model GRAZING

Few years ago the semi-classical model for heavy ion reactions GRAZING!)-3)
has been developed for the study of grazing reactions and the transition from the
quasi-clastic to the deep inelastic regime. This model describes the evolution of the
reaction by expanding the total wave function of the system ¥(t) in intrinsic states
of the different asymptotic mass partitions. It incorporates, on the same footing, the
excitation of the surface modes and the transfer degrees of freedom responsible for
the rearrangement of mass and charge among the reactants.

The time evolution of the reaction is described by the following system of semi-
classical coupled equations:

ihés(t) = an(t) < B Himt|ox > enEs—Ba)t+i(d3—da) (2-1)
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obtained from the time dependent Schrodinger equation
ih(t) = (Ho + Hing )P (1) (2:2)

by expanding, in term of channel wave functions , = d)“(t)wA(t)e'ig(ﬁ), the total
wave function of the system

F(t) =Y calt)pger’ (2-3)
5

The time dependent coefficient cg(t) represents the amplitude for the system to be,
at time ¢, in channel 8. The semi-classical phase ) (I_f), appearing in the definition
of the channel wave functions, is introduced to account for the non linear motion of
the two ions in the nuclear plus Coulomb field.

With Hp we indicated the intrinsic Hamiltonian, that for the mass partition
a = (a, A) is written as

(a) (a)
Hy = an:fai + wa)\a?\ﬂ’a;\# + (A4) (2:4)
i Ap

and with H;,, we represented the residual interaction responsible for the excitation
of the surface modes and the exchange of nucleons,

Hing(t) = Vir(8) + Vin(t) + AUaa(?)- (2:5)

The residual interaction is composed of three parts; V;,, contains the well known form-
factors for inelastic excitation, V;, contains the one-nucleon transfer form-factors and
AU, the correction to the diagonal part of the interaction. The time dependence of
the matrix elements is obtained by solving the Newtonian equations for the relative
motion in the nuclear plus Coulomb field. For the nuclear potential we use the
Akyﬁz—Winthcr4) parametrisation that describes quite well elastic scattering data
for several projectile and target combinations.

At a given bombarding energy the fusion/reaction cross section, in term of the
partial wave expansion, is written,

™ 2,2
o(E)=Y" 2mi 2+ D), (2:6)

where Ty(E) is the transmission probability through the potential barrier of partial
wave £. This, in the inverse parabolic approximation, becomes

EW(Eb—E):l—l

Ty(E) = [1+e T (27)

where Ej is the barrier of the effective potential at 7 and wy the frequency given by

1 | 02U,
wp = [ 6'."2”} . (2-8)
Ty

MaA




Fusion Reactions as a Probe of the Nucleus-Nucleus Potential 203

In the calculation of T;(E) special attention has to be put in the definition of the
capture distance, since simple classical calculations™-% demonstrate that due to the
excitation of the surface modes capture may arise for trajectories with an f-value
greater than the {-grazing. In order to give an estimation of the capture angular
momentum £, we look at the evolution of the distance s(r, ay,) between the surfaces
of the two nuclei. A simple inspection at the acceleration § tells us that when this
is negative very large deformations will develop; it is thus natural to search, in the
multidimensional (7, c,,) space, the point where § = 0 and choose this point as
the capture distance and the capture angular momentum £, (for more details confer
Refs. 1),3)).

In the presence of couplings, the energy of relative motion is not well defined.
An exchange of energy from the relative motion to the intrinsic degrees of freedom
takes place, and the above formulae for the fusion cross section have to be modified
to incorporate this effect. By solving in an approximate way the above system of
coupled equations,’)3) the model calculates, for each time ¢, the distribution of
relative motion energy FE,.

(B )" — BR

B, = H{ty— — . (2:9)

2mgar
where, with L and I, we indicated the initial angular momentum and the one dissi-
pated in intrinsic motion. The distribution in relative motion energy can be easily
interpreted as a distribution of barrier height so that the actual transmission coeffi-
cient may be given by the following folding integral:

T(E) = | " P(E)TUE - E)E. (2:10)

—00

where with P(F, ) we indicated the barrier distribution. Since the barrier distribution
P(E,) comes from the excitation of surface modes and transfer of nucleons, it has
to be energy dependent in particular at higher energy when the transfer of angular
momentum is important. It is in fact easy to show that the transfer of angular
momentum modify the energy of the mode in accordance to the relation:

w— (w-— ,u,'f)(t)) (2-11)
being @(t) the angular velocity.
§3. Applications

The aim of the outlined semi-classical model is to give a unified description of
elastic scattering, quasi-elastic and fusion reactions. It is thus natural to start the
applications with the study of the collisions of “°Ca on 9097y isotopes.” These, in
fact, are among the few reactions where, together with the fusion excitation function,
quasi-elastic scattering, angular distributions and energy spectra for several transfer
channels have been measured.
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the lines are the results of GRAZING cal- values, lines are the results of GRAZING
culations | 7 ‘ calculations.

By including the low lying 27 and 3~ states of projectile and target® and all
the transfer channels (we recall that these are treated in the independent particle
picture), one obtains for the fusion excitation function and barrier distributions the
results shown in Fig. 1. The comparison between the experimental and theoretical
barrier distributions is only qualitative since the experimental ones have been ex-
tracted from the measured excitation functions via a second order energy derivative
of Eo(E). The barrier distributions extracted with this procedure coincide with the
one of the theory only if they are energy independent. In this model this is not
the case. At energies larger than the Coulomb barrier, the transfer of angular mo-
mentum is important and the barrier distributions acquire all a broad Gaussian-like
shape.

In Fig. 2 are shown, for the indicated bombarding energies, the angular distribu-
tions for one and two nucleon transfer channels. While the model gives a reasonable
description for the neutron transfer channels and the one-proton stripping under
predict the -2p channel. In the bottom row of the same figure are also reported the
calculated quasi-elastic angular distributions (ratio to Rutherford) that are, in all
cases, well described. This indicates that the potentials used in the calculations are
reasonable. In the model there is no imaginary potential, the de-population of the
entrance channel is due to the coupling to reaction channels.
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Fig. 3. GRAZING calculations for the barrier Fig. 4. GRAZING calculations of fusion for
distributions in the “'Ca + **°Zr, where Aty + 90967r where the contributions of
the contributions of various inelastic chan- 4 L
nels are evidenced.

various channels are evidenced.

To understand why the two zirconium isotopes have a so different barrier dis-
tribution we made a detailed analysis of the contributions from the various inelastic
channels. Figure 3 leads to the conclusion that the peak-less shape observed for the
barrier distribution of 4°Ca + %7y is essentially due to the strength of the octupole
vibration in "*Zr, which is more collective and lies lower in energy than in %0Zr.

The various reaction channels influence differently the barrier penetrability thus,
in trying to solve the old controversy among transfer and/or vibrational states, we
calculated the contributions of the various couplings to the enhancements of the
fusion cross sections. The results are shown in Fig. 4. It is clear that for both
systems the largest contribution to the fusion enhancement is coming from inelastic
excitation of the low lying states in projectile and target (being the “0Ca that gives
the largest contribution), the transfer channels seem to play a minor role. The
importance of the high-lying modes it has also been checked, in all cases their effect
may be accounted for by a small re-normalization of the strength of the real potential.

Very recently the fusion excitation function among of the same zirconium iso-
topes with **Ca have been measured.?) The comparison between theory and exper-
imental data is shown in Fig. 5. As in the previous examples, the calculations have
been performed including the low lying 2% and 3~ states of projectile and target®
and all the transfer channels. What makes these cases of particular interest are the
barrier distributions, shown in the top frames of the figure. The two curves represent
barrier distributions at two different bombarding energies (they differ by ~15 MeV).
The %57Zr reaction displays a barrier distribution that is almost energy independent.
This is the ideal case to check if the barrier distribution obtained from the second
order energy derivative of the Eo(E) is connected to the "true” barrier distribution
that reflects the coupling to the degrees of freedom of target and projectile. In Fig. 6
we display the comparison between the theoretical barrier distribution (dotted line)
and the ones extracted from the calculated excitation function. This last procedure
indeed reproduces quite well the excitation function if, in taking the derivative, one
uses a small energy step (0.2 MeV in this case). If one uses a larger energy step,
very close to the one of the experiment, the obtained barrier distribution is quite
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Fig. 5. GRAZING calculations of fusion exci-
tation function for #Ca + °%°%Zr in com-
parison with thre experimental data.?) In
the top are shown the calculated barrier
distribution for two bombarding energies
(see text).
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Fig. 6. Comparison between the theoretical
barrier distribution (dotted line) and the
one extracted from the fusion excitation
function via second order energy derivative
of Fo(F). The full line corresponds to an
energy step of 0.2 MeV, while the dash-
dotted line corresponds to an energy step
of 0.8 MeV (similar to the one of the ex-
perimental data).

different, it looses all the structure. This is clearly a warning to the actual content
of the barrier distributions extracted from the experimental excitation functions. A
little more caution should be used in the comparison with the theoretical one.

§4. Fusion at very low energies

Uy [MeV]

r [tm]

Fig. 7. The nucleus-nucleus potential for a
head-on collision (¢ = 0) in the reaction
5ONi 4+ #9Y. Shown in the figure is also the
parabolic approximation.

Measurements of sub-barrier fusion
cross sections may become an effective
tool!®) to shed light on the characteris-
tics of the nuclear potential at distances
shorter than the Coulomb barrier. In
fact, the standard approach to investi-
gate these reactions exploits the mecha-
nism of barrier penetration in the pres-
ence of couplings to intrinsic degrees of
freedom.t1715) Crucial to the success of
these analyses is a proper adjustment of
the height and thickness of the potential
barrier for small partial waves (£ ~ 0).
While the former controls displacements
in the energy scale, the barrier width is
related to the exponential slope 27 /fw,
of the function (E) at the lowest ener-
gies.
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The drastic exponential drop associated with the characteristic values of fuv,
has limited in practice the range of measured cross section to only a few MeV below
the Coulomb barrier. In such case the parabolic approximation remains valid. A
pioneering experiment done in Argonne!'®) has gone to very low energies showing that
here the fusion cross section drops faster than the expected exponential behavior.

A large number of ion-ion potentials predict a pocket in the inner region, as is
llustrated in Fig. 7. Here we see the profile of a frequently used ion-ion potential
(the Akyiiz-Winther potential of Ref. 4)). Shown in the figure is also the absolute
limit to fusion that comes from the required exothermic character of the process.
This energy is far below the relative one quenching the tunneling process, V., and
therefore it is clear that the latter takes precedence as a limiting mechanism causing,

10° | R
AT
10! */A
P
E‘ _— /{y
= = 4.
5 B o
=} -
1 f) 5 ° 104{ i
! .
110 of
/ \ 1w
) \ %4 80N; +8%y
100 P S TR LAY o
8 10 12 14 16 .
i _ A
r [fm] 120 128 130 136
Eqy [MeV]
,.’—"——_‘ N . . . .
’ Fig. 9. Fusion excitation function as calcu-
3 lated from GRAZING for the indicated sys-
1 tem in comparison with the experimental
= 3 data. Also shown (dash-line) are the re-
*E- 9 sults using the analytical expression for the
] transmission coefficient.
3
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pected to show up even much earlier as
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Fig. 8. Top, three possible ion-ion potentials
which have an identical radial dependence
for r > 11.01 fm. Bottom, the fusion ex-

citation function for the potentials shown where this would happen is shown by
above. gpqar(F) is the cross section within the arrow, less than 5 MeV below the
the parabolic approximation. barrier.

To show that it is possible to learn about the shape of the potential in the
inner side of the potential barrier we start by studying the fusion cross sections in
the absence of interactions. How the couplings to different reaction channels affect
the so-called “reference” curve has been extensively covered in the literature!')-1%)
and we know that the final results at the lowest bombarding energies always inherit
(or build upon) whatever characteristics are already present in the simplest barrier-
penetration formulation of the problem. At low energy, lower than the one indicated
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with an arrow in Fig. 7, we cannot rely in the analytic form of the transmission
coefficients for a parabolic barrier and we shall use, in what follows, their WKB
expression.!) Taking a family of hypothetical potentials, shown at the top of Fig. 8,
that are identical for large values of r and which share the same values of V,, r,
and hw, we obtain for the fusion excitation function the results show at the bottom
of the same figure. It is clear that the drop of the fusion cross sections follows the
different values of the inside pocket of the potentials.

To demonstrate that the above picture is not destroyed by the coupling, GRAZ-
ING has been modified to accept the new potentials and to use the WKB expression
for the transmission coefficient. The results of such calculations are shown in Fig. 9
for the potential labelled 3 in Fig. 8. The shallow pocket of the potential will not
only influence the fusion cross section at low energies but it will modify the sharing,
of the total reaction cross section reaction between fusion and deep-inelastic clearly
in favor of the last.

§5. Conclusions

The semi-classical model presented here provides a very effective tool to under-
stand the role played by the intrinsic degrees of freedom in the enhancement of the
fusion cross section. The main effect has been demonstrated to come from the exci-
tation of the surface modes and the transfer channels play only a minor role (at high
energy they are very important providing the main mechanism for the dissipation
of energy). It has also been shown that from the low energy behavior of the fusion
cross section one can learn about the potential at very short distances.
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